
IMS

Application Programming: Design Guide
Version 9

SC18-7810-04

���





IMS

Application Programming: Design Guide
Version 9

SC18-7810-04

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 191.

This edition applies to IMS Version 9 (program number 5655-J38) and to all subsequent releases and modifications
until otherwise indicated in new editions. This edition replaces SC18-7810-03.

© Copyright IBM Corporation 1974, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . vii

Tables . . . . . . . . . . . . . . . ix

About This Book. . . . . . . . . . . xi
Summary of Contents . . . . . . . . . . . xi
Prerequisite Knowledge . . . . . . . . . . xi
How to Use This Book . . . . . . . . . . . xi
IBM Product Names Used in This Information . . xii
How to Read Syntax Diagrams . . . . . . . xiv
Accessibility Features for IMS Version 9 . . . . . xv

Accessibility Features . . . . . . . . . . xv
Keyboard Navigation . . . . . . . . . . xvi
Related Accessibility Information . . . . . . xvi
IBM and Accessibility. . . . . . . . . . xvi

How to Send Your Comments . . . . . . . . xvi

Summary of Changes . . . . . . . . xvii
Changes to the Current Edition of This Book for
IMS Version 9 . . . . . . . . . . . . . xvii
Changes to This Book for IMS Version 9 . . . . xvii
Library Changes for IMS Version 9 . . . . . . xvii

New and Revised Titles . . . . . . . . . xvii
Organizational Changes . . . . . . . . xviii
Terminology Changes . . . . . . . . . xviii

Chapter 1. Designing an Application:
Introductory Concepts . . . . . . . . 1
Storing and Processing Information in a Database . . 1

Storing Data in Separate Files. . . . . . . . 1
Storing Data in a Combined File . . . . . . . 2
Storing Data in a Database. . . . . . . . . 2
Database Hierarchies . . . . . . . . . . 3
Your Program's View of the Data . . . . . . 4
Processing a Database Record. . . . . . . . 6

A Look at the Tasks Ahead of You . . . . . . . 7
Designing the Application . . . . . . . . . 7
Developing Specifications . . . . . . . . . 7
Implementing the Design . . . . . . . . . 8

Chapter 2. Designing an Application:
Data and Local Views . . . . . . . . . 9
An Overview of Application Design . . . . . . 9
Identifying Application Data. . . . . . . . . 11

Listing Data Elements . . . . . . . . . . 12
Naming Data Elements . . . . . . . . . 13
Documenting Application Data . . . . . . . 14

Designing a Local View . . . . . . . . . . 16
Analyzing Data Relationships . . . . . . . 16
Local View Examples . . . . . . . . . . 22

Chapter 3. Analyzing IMS Application
Processing Requirements . . . . . . 29

Deciding Your IMS Application’s Requirements . . 29
Accessing Databases With Your IMS Application
Program . . . . . . . . . . . . . . . 30
Accessing Data: The Types of Programs You Can
Write for Your IMS Application. . . . . . . . 32

DB Batch Processing . . . . . . . . . . 33
TM Batch Processing . . . . . . . . . . 34
Processing Messages: MPPs . . . . . . . . 34
Processing Messages: IFPs . . . . . . . . 35
Batch Message Processing: BMPs . . . . . . 36
Java Message Processing: JMPs . . . . . . . 39
Java Batch Processing: JBPs . . . . . . . . 39

IMS Programming Integrity and Recovery
Considerations . . . . . . . . . . . . . 40

How IMS Protects Data Integrity: Commit Points 40
Planning for Program Recovery: Checkpoint and
Restart . . . . . . . . . . . . . . . 43
Data Availability Considerations . . . . . . 46
Use of STAE or ESTAE and SPIE in IMS
Programs . . . . . . . . . . . . . . 48

Dynamic Allocation for IMS Databases . . . . . 49

Chapter 4. Analyzing CICS Application
Processing Requirements . . . . . . 51
Deciding Your CICS Application's Requirements . . 51
Accessing Databases With Your CICS Application
Program . . . . . . . . . . . . . . . 53
Writing a CICS Program to Access IMS Databases 54

Writing a CICS Online Program . . . . . . 54
Writing an IMS Batch Program . . . . . . . 56
Writing a Batch-Oriented BMP Program . . . . 57

Using Data Sharing for Your CICS Program . . . 58
Scheduling and Terminating a PSB (CICS Online
Programs Only) . . . . . . . . . . . . . 59
Linking and Passing Control to Other Programs
(CICS Online Programs Only) . . . . . . . . 59
How CICS Distributed Transactions Access IMS . . 60
Maximizing the Performance of Your CICS System 60
Programming Integrity and Database Recovery
Considerations for Your CICS Program . . . . . 61

How IMS Protects Data Integrity for Your
Program (CICS Online Programs) . . . . . . 61
Recovering Databases Accessed by Batch and
BMP Programs . . . . . . . . . . . . 61

Data Availability Considerations for Your CICS
Program . . . . . . . . . . . . . . . 65

Unavailability of a Database . . . . . . . . 65
Unavailability of Some Data in a Database . . . 66
The SETS or SETU and ROLS Functions . . . . 67

Use of STAE or ESTAE and SPIE in IMS Batch
Programs . . . . . . . . . . . . . . . 67
Dynamic Allocation for IMS Databases . . . . . 68

Chapter 5. Gathering Requirements for
Database Options . . . . . . . . . . 69

© Copyright IBM Corp. 1974, 2011 iii

|
||

||
||

||



Analyzing Data Access . . . . . . . . . . 69
Direct Access . . . . . . . . . . . . . 70
Sequential Access . . . . . . . . . . . 74
Accessing z/OS Files through IMS: GSAM . . . 76
Accessing IMS Data through z/OS: SHSAM and
SHISAM . . . . . . . . . . . . . . 76

Understanding How Data Structure Conflicts Are
Resolved . . . . . . . . . . . . . . . 77

Using Different Fields: Field-Level Sensitivity . . 77
Resolving Processing Conflicts in a Hierarchy:
Secondary Indexing . . . . . . . . . . 78
Creating a New Hierarchy: Logical Relationships 82

Providing Data Security . . . . . . . . . . 85
Providing Data Availability . . . . . . . . 85
Keeping a Program from Accessing the Data:
Data Sensitivity . . . . . . . . . . . . 86
Preventing a Program from Updating Data:
Processing Options . . . . . . . . . . . 88

Read Without Integrity . . . . . . . . . . 90
What Read Without Integrity Means . . . . . 90
Data Set Extensions. . . . . . . . . . . 91

Chapter 6. Gathering Requirements for
Message Processing Options . . . . . 93
Identifying Online Security Requirements . . . . 93

Limiting Access to Specific Individuals: Signon
Security . . . . . . . . . . . . . . 93
Limiting Access for Specific Terminals: Terminal
Security . . . . . . . . . . . . . . 94
Limiting Access to the Program: Password
Security . . . . . . . . . . . . . . 94
Allowing Access to Security Data: Authorization
Security . . . . . . . . . . . . . . 94
How IMS Security Relates to DB2 UDB for z/OS
Security . . . . . . . . . . . . . . 94
Supplying Security Information. . . . . . . 95

Analyzing Screen and Message Formats . . . . . 95
An Overview of MFS . . . . . . . . . . 96
An Overview of Basic Edit . . . . . . . . 96
Editing Considerations in Your Application. . . 96

Gathering Requirements for Conversational
Processing . . . . . . . . . . . . . . . 98

What Happens in a Conversation . . . . . . 98
Designing a Conversation . . . . . . . . 98
Important Points about the SPA . . . . . . 99
Recovery Considerations in Conversations. . . 100

Identifying Output Message Destinations . . . . 101
The Originating Terminal . . . . . . . . 101
To Other Programs and Terminals . . . . . 101

Chapter 7. Designing an Application
for APPC . . . . . . . . . . . . . 105
Overview of APPC and LU 6.2 . . . . . . . 105
Application Program Types. . . . . . . . . 105

Standard DL/I Application Program . . . . 106
Modified Standard DL/I Application Program 106
CPI Communications Driven Program . . . . 106

Application Objectives . . . . . . . . . . 107
Choosing Conversation Attributes . . . . . . 107

Synchronous Conversation . . . . . . . . 107

Asynchronous Conversation . . . . . . . 108
Asynchronous Output Delivery . . . . . . 108
MSC Synchronous and Asynchronous
Conversation . . . . . . . . . . . . 108

Conversation Type . . . . . . . . . . . 108
Conversation State . . . . . . . . . . . 109
Synchronization Level . . . . . . . . . . 109
Distributed Sync Point . . . . . . . . . . 110

Distributed Sync Point Concepts . . . . . . 110
Impact on the Network . . . . . . . . . 114

Application Programming Interface for LU Type 6.2 114
Implicit API . . . . . . . . . . . . . 114
Explicit API . . . . . . . . . . . . . 115

LU 6.2 Partner Program Design . . . . . . . 115
LU 6.2 Flow Diagrams . . . . . . . . . 115
Integrity Tables . . . . . . . . . . . . 133
DFSAPPC Message Switch . . . . . . . . 135

Chapter 8. Writing ODBA Application
Programs . . . . . . . . . . . . . 137
General Application Program Flow . . . . . . 138

Establishing the Application Execution
Environment . . . . . . . . . . . . 138
Allocating a PSB . . . . . . . . . . . 139
Performing DB Calls . . . . . . . . . . 140
Commit Changes . . . . . . . . . . . 140
Deallocating the PSB . . . . . . . . . . 140
Terminating the Connection . . . . . . . 140

Server Program Structure . . . . . . . . . 141
DB2 UDB for z/OS Stored Procedures Use of
ODBA . . . . . . . . . . . . . . . . 141

Chapter 9. Testing an IMS Application
Program . . . . . . . . . . . . . 143
What You Need to Test an IMS Program . . . . 143
Testing DL/I Call Sequences (DFSDDLT0) Before
Testing Your IMS Program . . . . . . . . . 143
Using IMS Batch Terminal Simulator for z/OS to
Test Your IMS Program . . . . . . . . . . 144
Tracing DL/I Calls with Image Capture for Your
IMS Program . . . . . . . . . . . . . 145

Using Image Capture with DFSDDLT0 . . . . 145
Restrictions on Using Image Capture Output 146
Running Image Capture Online . . . . . . 146
Running Image Capture as a Batch Job . . . . 147
Retrieving Image Capture Data from the Log
Data Set . . . . . . . . . . . . . . 148

Requests for Monitoring and Debugging Your IMS
Program . . . . . . . . . . . . . . . 149

Retrieving Database Statistics: The STAT Call 149
Writing Information to the System Log: The
LOG Request . . . . . . . . . . . . 162

What to Do When Your IMS Program Terminates
Abnormally . . . . . . . . . . . . . . 162

Recommended Actions after an Abnormal
Termination of an IMS Program . . . . . . 163
Diagnosing an Abnormal Termination of an IMS
Program . . . . . . . . . . . . . . 163

iv Application Programming: Design Guide



Chapter 10. Testing a CICS
Application Program . . . . . . . . 165
What You Need to Test a CICS Program . . . . 165
Testing Your CICS Program. . . . . . . . . 166

Using the Execution Diagnostic Facility
(Command-Level Only) . . . . . . . . . 166
Using CICS Dump Control . . . . . . . . 167
Using CICS Trace Control . . . . . . . . 167
Using the DL/I Test Program (DFSDDLT0) . . 167
Tracing DL/I Calls with Image Capture . . . 167

Requests for Monitoring and Debugging Your CICS
Program . . . . . . . . . . . . . . . 171
What to Do When Your CICS Program Terminates
Abnormally . . . . . . . . . . . . . . 171

Recommended Actions after an Abnormal
Termination of CICS . . . . . . . . . . 171
Diagnosing an Abnormal Termination of CICS 172

Chapter 11. Testing an ODBA
Application Program . . . . . . . . 175
Using the DL/I Test Program (DFSDDLT0) Before
Testing Your ODBA Program . . . . . . . . 176
Tracing DL/I Calls with Image Capture to Test
Your ODBA Program . . . . . . . . . . . 176
Using Image Capture with DFSDDLT0 to Test Your
ODBA Program . . . . . . . . . . . . 176
Running Image Capture Online . . . . . . . 177
Retrieving Image Capture Data from the Log Data
Set . . . . . . . . . . . . . . . . . 177
Requests for Monitoring and Debugging Your
ODBA Program . . . . . . . . . . . . 178
What to Do When Your ODBA Program Terminates
Abnormally . . . . . . . . . . . . . . 178

Recommended Actions after an Abnormal
Termination of an ODBA Program . . . . . 178

Diagnosing an Abnormal Termination of an
ODBA Program . . . . . . . . . . . 179

Chapter 12. Documenting an
Application Program . . . . . . . . 181
Documentation for Other Programmers . . . . 181
Documentation for Users . . . . . . . . . 182

Chapter 13. Managing the IMS Spool
API Overall Design . . . . . . . . . 183
The IMS Spool API Design . . . . . . . . . 183
Sending data to the JES Spool Data Sets . . . . 184
Spool API Performance Considerations . . . . . 184

JES Initiator Considerations . . . . . . . 184
Application Managed Text Units . . . . . . 184
BSAM I/O Area . . . . . . . . . . . 185

Spool API Application Coding Considerations . . 185
Print Data Formats . . . . . . . . . . 185
Message Integrity Options . . . . . . . . 186

Appendix. IVP Sample Application 189

Notices . . . . . . . . . . . . . . 191
Programming Interface Information . . . . . . 193
Trademarks . . . . . . . . . . . . . . 194

Bibliography. . . . . . . . . . . . 195
IMS Version 9 Library . . . . . . . . . . 195
Supplementary Publications . . . . . . . . 196
Publication Collections . . . . . . . . . . 196
Accessibility Titles Cited in This Library . . . . 196

Index . . . . . . . . . . . . . . . 197

Contents v

||



vi Application Programming: Design Guide



Figures

1. Medical Database Hierarchy . . . . . . . 3
2. Accounting Program's View of the Database 5
3. Patient Illness Program's View of the Database 5
4. Current Roster for Technical Education

Example . . . . . . . . . . . . . 12
5. Current Roster after Step 1 . . . . . . . 18
6. Current Roster after Step 2 . . . . . . . 20
7. Current Roster after Step 3 . . . . . . . 21
8. Schedule of Courses. . . . . . . . . . 23
9. Course Schedule after Step 1 . . . . . . . 24

10. Instructor Skills Report. . . . . . . . . 24
11. Instructor Skills after Step 1 . . . . . . . 25
12. Instructor Schedules. . . . . . . . . . 25
13. Instructor Schedules Step 1 . . . . . . . 26
14. Instructor Schedules Step 2 . . . . . . . 26
15. Documenting User Task Descriptions: Current

Roster Example . . . . . . . . . . . 30
16. Single Mode and Multiple Mode . . . . . 42
17. Current Roster Task Description. . . . . . 52
18. Patient Hierarchy . . . . . . . . . . 79
19. Indexing a Root Segment . . . . . . . . 81
20. Indexing a Dependent Segment . . . . . . 81
21. Patient and Inventory Hierarchies . . . . . 83
22. Logical Relationships Example . . . . . . 84
23. Supplies and Purchasing Hierarchies . . . . 84
24. Program B and Program C Hierarchies 85
25. Medical Database Hierarchy . . . . . . . 86
26. Sample Hierarchy for Key Sensitivity Example 87
27. Participants in Resource Recovery . . . . . 111
28. Two-Phase Commit Process with One

Resource Manager . . . . . . . . . . 112
29. Distributed Resource Recovery . . . . . . 113
30. Flow of a Local IMS Synchronous Transaction

When Sync_level=None . . . . . . . . 116
31. Flow of a Local IMS Synchronous Transaction

When Sync_level=Confirm . . . . . . . 117
32. Flow of a Local IMS Asynchronous

Transaction When Sync_level=None . . . . 118
33. Flow of a Local IMS Asynchronous

Transaction When Sync_level=Confirm . . . 119

34. Flow of a Local IMS Conversational
Transaction When Sync_level=None . . . . 120

35. Flow of a Local IMS Command when
Sync_level=None . . . . . . . . . . 121

36. Flow of a Local IMS Asynchronous
Command When Sync_level=Confirm . . . 121

37. Flow of a Message Switch When
Sync_level=None . . . . . . . . . . 122

38. Flow of a Local CPI Communications Driven
Program When Sync_level=None . . . . . 122

39. Flow of a Remote IMS Synchronous
Transaction When Sync_level=None . . . . 123

40. Flow of a Remote IMS Asynchronous
Transaction When Sync_level=None . . . . 124

41. Flow of a Remote IMS Asynchronous
Transaction When Sync_level=Confirm . . . 125

42. Flow of a Remote IMS Synchronous
Transaction When Sync_level=Confirm . . . 126

43. Standard DL/I Program Commit Scenario
When Sync_level=Syncpt . . . . . . . 127

44. CPI-C Driven Commit Scenario When
Sync_Level=Syncpt . . . . . . . . . 128

45. Standard DL/I Program U119 Backout
Scenario When Sync_Level=Syncpt . . . . 129

46. Standard DL/I Program U0711 Backout
Scenario When Sync_Level=Syncpt . . . . 130

47. Standard DL/I Program ROLB Scenario
When Sync_Level=Syncpt . . . . . . . 131

48. Multiple Transactions in Same Commit When
Sync_Level=Syncpt . . . . . . . . . 132

49. z/OS Application Region's Connection to IMS
DB . . . . . . . . . . . . . . . 137

50. DRA Uses One TCB per Thread . . . . . 141
51. DB2 UDB for z/OS Stored Procedures

Connection to IMS DB . . . . . . . . 142
52. DB2 UDB for z/OS Stored Procedures

Relationships . . . . . . . . . . . 142

© Copyright IBM Corp. 1974, 2011 vii

||



viii Application Programming: Design Guide



Tables

1. Licensed Program Full Names and Short
Names . . . . . . . . . . . . . . xii

2. Entities and Data Elements . . . . . . . 11
3. Example of Data Elements Information Form 15
4. Single Occurrence of Class Aggregate . . . . 17
5. Data Aggregates and Keys for Current Roster

after Step 1. . . . . . . . . . . . . 18
6. Multiple Occurrences of Class Aggregate 19
7. Data Aggregates and Keys for Current Roster

after Step 3. . . . . . . . . . . . . 21
8. Course Schedule Data Elements . . . . . . 23
9. Data Aggregates and Keys for Course

Schedule after Step 1 . . . . . . . . . 24
10. Instructor Skills Data Elements . . . . . . 25
11. Instructor Schedules Data Elements . . . . 25

12. Program and Database Options in IMS
Environments . . . . . . . . . . . . 31

13. Processing Modes . . . . . . . . . . 42
14. The Data that Your CICS Program Can Access 53
15. Program and Database Options in the CICS

Environments . . . . . . . . . . . . 53
16. Physical Employee Segment . . . . . . . 78
17. Employee Segment with Field-Level Sensitivity 78
18. Using Application Programs in APPC 107
19. Message Integrity of Conversations . . . . 133
20. Results of Processing When Integrity Is

Compromised . . . . . . . . . . . 134
21. Recovering APPC Messages. . . . . . . 134
22. Tools You Can Use for Testing Your Program 166
23. Tools You Can Use for Testing Your Program 175

© Copyright IBM Corp. 1974, 2011 ix

|
||

||
||



x Application Programming: Design Guide



About This Book

This information is available as part of the Information Management Software for
z/OS® Solutions Information Center at http://www.publib.boulder.ibm.com/
infocenter/imzic. A PDF version of this information is available in the information
center.

Summary of Contents
The chapters in this book are applicable in both the IMS™ and CICS® environments
unless otherwise noted. Chapter content is as follows:

Introduction

Chapters 1 and 2 explain the basics for designing an application. The first
chapter defines database concepts and terms, and the second chapter introduces
the tasks of application design. These two introductory chapters also explain
how to identify required application data and how to design a local view to
describe that data.
Designing the Application

Chapters 3 through 6 describe the tasks involved in designing an application.
These tasks include choosing the type of application program you need for both
the IMS and CICS environments and gathering the information for the database
administrator and system administrator.
Implementing the Design

Chapters 7 through 12 include considerations for using your application after
the specifications have been developed. These considerations are using LU
6.2/APPC for distributing your application throughout the network, testing
your application program after you have finished coding it, and documenting
additional information about your program.

Prerequisite Knowledge
Before using this manual, you should understand basic IMS concepts and the IMS
environments. IBM® offers a wide variety of classroom and self-study courses to
help you learn IMS. For a complete list, see the IMS home page on the World Wide
Web at: www.ibm.com/ims.

You will also find descriptions of basic IMS concepts and the IMS environments at
the above Web site.

If you are a CICS user, you should understand a similar level of information for
CICS. The IMS concepts explained in this manual are limited to those concepts
pertinent to designing application programs. You should also know how to use
COBOL, PL/I, Assembler language, Pascal, or C language.

How to Use This Book
This book is one of several books documenting the IMS application programming
task. This book is the introductory book. The complete package of application
programming materials is as follows:

© Copyright IBM Corp. 1974, 2011 xi



v IMS Version 9: Application Programming: Design Guide (APDG), the book you are
currently reading, is the introductory application programming book and is also
the place to find information common to all of the application programming
environments.

v IMS Version 9: Application Programming: Database Manager (APDB) describes how
to write an application program to process a database using DL/I calls. This
book applies to both IMS and CICS environments.

v IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS
(APCICS) describes how to write an application program to process the database
using EXEC DLI commands.

v IMS Version 9: Application Programming: Transaction Manager (APTM) describes
how to write an application program to process messages using DC calls.

For definitions of terms used in this manual and references to related information
in other manuals, please see IMS Version 9: Master Index and Glossary.

IBM Product Names Used in This Information
In this information, the licensed programs shown in Table 1 are referred to by their
short names.

Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM Application Recovery Tool for IMS and
DB2®

Application Recovery Tool

IBM CICS Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS Enterprise COBOL

IBM Enterprise COBOL for z/OS and
OS/390

Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM
& VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

xii Application Programming: Design Guide



Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for
z/OS

IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for
z/OS

IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data
Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database
(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change
Accumulation Utility for z/OS

IMS High Performance Change
Accumulation Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker
for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution
for z/OS

IMS HP Prefix Resolution

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for
z/OS and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application
Developer Integration Edition

WebSphere Studio

IBM z/OS z/OS

Additionally, this information might contain references to the following IBM
product names:
v "IBM C/C++ for MVS" or "IBM C/C++ for MVS/ESA" is referred to as either

"C/MVS" or "C++/MVS."
v "IBM CICS for MVS" is referred to as "CICS."
v "IBM DataAtlas for OS/2" is referred to as "DataAtlas."
v "IBM Language Environment for MVS & VM" or "IBM z/OS Language

Environment" is referred to as "Language Environment."
v "IBM PL/I for MVS & VM" or "IBM PL/I for OS/390 & VM" is referred to as

"PL/I."

About This Book xiii



How to Read Syntax Diagrams
The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

xiv Application Programming: Design Guide



�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_item

v In IMS, a b symbol indicates one blank position.
v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

Accessibility Features for IMS Version 9
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility Features
The following list includes the major accessibility features in z/OS products,
including IMS Version 9. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size.

The information center is accessibility-enabled for the IBM Home Page Reader. You
can operate all features by using the keyboard instead of the mouse.

About This Book xv

|
|



Keyboard Navigation
You can access IMS Version 9 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the IMS Version 9 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related Accessibility Information
Online documentation for IMS Version 9 is available in the information center.

IBM and Accessibility
See the IBM Accessibility Center at www.ibm.com/able for more information about
the commitment that IBM has to accessibility.

How to Send Your Comments
Your feedback helps us provide the most accurate and highest quality information.
The documentation for this version is provided as-is and is no longer being
updated. However, we welcome your feedback and will review your comments to
see if we can use them to improve versions of the product that are still in service.

Send your comments by email to imspubs@us.ibm.com.

xvi Application Programming: Design Guide

|

|
|
|
|



Summary of Changes

Changes to the Current Edition of This Book for IMS Version 9
This edition includes technical and editorial changes.

Changes to This Book for IMS Version 9
This book contains new technical information for IMS Version 9, as well as
editorial changes. This book contains new information about:
v Program and database options in IMS environments, “Accessing Databases With

Your IMS Application Program” on page 30
v The IVP sample application, in “IVP Sample Application,” on page 189

Library Changes for IMS Version 9
Changes to the IMS Library for IMS Version 9 include the addition of one title, a
change of one title, organizational changes, and a major terminology change.
Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the Information Management
Software for z/OS Solutions Information Center, which is available at
http://publib.boulder.ibm.com/infocenter/imzic. The Information Management
Software for z/OS Solutions Information Center provides a graphical user interface
for centralized access to the product information for IMS, IMS Tools, DB2
Universal Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management
Facility (QMF™).

There are known limitations with BookManager output. If you encounter problems
in the BookManager information with Web addresses, syntax diagrams, wide
examples, or tables, refer to the information in the information center or in a PDF
book.

New and Revised Titles
The following list details the major changes to the IMS Version 9 library:
v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and
Reference. This information is available in softcopy format only, as part of the
Information Management Software for z/OS Solutions Information Center, and
in PDF and BookManager® formats.
IMS Version 9 provides an integrated IMS Connect function, which offers a
functional replacement for the IMS Connect tool (program number 5655-K52). In
this information, the term IMS Connect refers to the integrated IMS Connect
function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now
titled IMS Version 9: IMS Java Guide and Reference. This information is available in
softcopy format only, as part of the Information Management Software for z/OS
Solutions Information Center, and in PDF and BookManager formats.

© Copyright IBM Corp. 1974, 2011 xvii

|

|

|
|
|
|



v To complement the IMS Version 9 library, a retail book, An Introduction to IMS by
Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls
(ISBN # 0-13-185671-5), is available from IBM Press. Go to the IMS Web site at
www.ibm.com/ims for details.

Organizational Changes
Organization changes to the IMS Version 9 library include changes to:
v IMS Version 9: Customization Guide

v IMS Version 9: IMS Connect Guide and Reference

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

A new appendix has been added to the IMS Version 9: Customization Guide that
describes the contents of the ADFSSMPL (also known as SDFSSMPL) data set.

The IMS Connect messages that were in IMS Version 9: IMS Connect Guide and
Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

The IMS Connect commands that were in IMS Version 9: IMS Connect Guide and
Reference have moved to IMS Version 9: Command Reference.

The chapter titled "DLIModel Utility" has moved from IMS Version 9: IMS Java
Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and
Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

To ease the transition of your security support from the Security Maintenance
Utility (SMU) to RACF, new SMU to RACF conversion utilities have been
introduced. These utilities are documented in a new part in the IMS Version 9:
Utilities Reference: System.

Terminology Changes
IMS Version 9 introduces new terminology for IMS commands:

type-1 command
A command, generally preceded by a leading slash character, that can be
entered from any valid IMS command source. In IMS Version 8, these
commands were called classic commands.

type-2 command
A command that is entered only through the OM API. Type-2 commands
are more flexible than type-2 commands and can have a broader scope. In
IMS Version 8, these commands were called IMSplex commands or
enhanced commands.

xviii Application Programming: Design Guide

|
|

|
|

|
|

|
|
|
|



Chapter 1. Designing an Application: Introductory Concepts

This chapter provides an introduction to designing application programs. It
explains some basic concepts about processing a database, and gives an overview
of the tasks covered in this information.

The following topics provide additional information:
v “Storing and Processing Information in a Database”
v “A Look at the Tasks Ahead of You” on page 7

Storing and Processing Information in a Database
This section describes how storing data in a database is different from other ways
of storing data. The advantages of storing and processing data in a database are
that all of the data needs to appear only once and that each program must process
only the data that it needs. One way to understand this is to compare three ways
of storing data: in separate files, in a combined file, and in a database.

Storing Data in Separate Files
If you keep separate files of data for each part of your organization, you can
ensure that each program uses only the data it needs, but you must store a lot of
data in multiple places simultaneously. Problems with keeping separate files are:
v Redundant data takes up space that could be put to better use
v Maintaining separate files can be difficult and complex

Example: Suppose that a medical clinic keeps separate files for each of its
departments, such as the clinic department, the accounting department, and the
ophthalmology department:
v The clinic department keeps data about each patient who visits the clinic, such

as:
Identification number
Name
Address
Illnesses
Date of each illness
Date patient came to clinic for treatment
Treatment given for each illness
Doctor that prescribed treatment
Charge for treatment

v The accounting department also keeps information about each patient. The
information that the accounting department might keep for each patient is:

Identification number
Name
Address
Charge for treatment
Amount of payments

© Copyright IBM Corp. 1974, 2011 1



v The information that the ophthalmology department might keep for each patient
is:

Identification number
Name
Address
Illnesses relating to ophthalmology
Date of each illness
Names of members in patient's household
Relationship between patient and each household member

If each of these departments keeps separate files, each department uses only the
data that it needs, but much of the data is redundant. For example, every
department in the clinic uses at least the patient's number, name, and address.
Updating the data is also a problem, because if a department changes a piece of
data, the same data must be updated in each separate file. Therefore, it is difficult
to keep the data in each department's files current. Current data might exist in one
file while defunct data remains in another file.

Storing Data in a Combined File
Another way to store data is to combine all the files into one file for all
departments to use. In the medical example, the patient record that would be used
by each department would contain these fields:

Identification number
Name
Address
Illnesses
Date of each illness
Date patient came to clinic for treatment
Treatment given for each illness
Doctor that prescribed treatment
Charge for treatment
Amount of payments
Names of members in patient's household
Relationship between patient and each household member

Using a combined file solves the updating problem, because all the data is in one
place, but it creates a new problem: the programs that process this data must
access the entire file record to get to the part that they need. For example, to
process only the patient's number, charges, and payments, an accounting program
must access all of the other fields also. In addition, changing the format of any of
the fields within the patient's record affects all the application programs, not just
the programs that use that field.

Using combined files can also involve security risks, because all of the programs
have access to all of the fields in a record.

Storing Data in a Database
Storing data in a database gives you the advantages of both separate files and
combined files: all the data appears only once, and each program has access to the
data that it needs. This means that:

Storing and Processing Information

2 Application Programming: Design Guide



v When you update a field, you do it in one place only.
v Because you store each piece of information only in one place, you cannot have

an updated version of the information in one place and an out-of-date version in
another place.

v Each program accesses only the data it needs.
v You can prevent programs from accessing private or secured information.

In addition, storing data in a database has two advantages that neither of the other
ways has:
v If you change the format of part of a database record, the change does not affect

the programs that do not use the changed information.
v Programs are not affected by how the data is stored.

Because the program is independent of the physical data, a database can store all
the data only once and yet make it possible for each program to use only the data
that it needs. In a database, what the data looks like when it is stored is different
from what it looks like to an application program.

Database Hierarchies
In an IMS DB, a record is stored and accessed in a hierarchy. A hierarchy shows
how each piece of data in a record relates to other pieces of data in the record.
Figure 1 shows the hierarchy you can use to store the patient information as
described in this section.

IMS connects the pieces of information in a database record by defining the
relationships between the pieces of information that relate to the same subject. The
result is a database hierarchy.

Example: In the medical database, the data that you are keeping is information
about a particular patient. Information that is not associated with a particular
patient is meaningless. For example, keeping information about a treatment given
for a particular illness is meaningless if the illness is not associated with a patient.
To be meaningful, ILLNESS, TREATMNT, BILLING, PAYMENT, and HOUSHOLD
must always be associated with one of the clinic's patients.

You keep five kinds of information about each patient. The information about the
patient's illnesses, billings, and household depends directly on the patient.
Information about the patient's treatment depends on the patient's illness, and
information about the patient's payments depends on the patient's billings.

Each piece of data represented in Figure 1 is called a segment in the hierarchy. Each
segment contains one or more fields of information. The PATIENT segment, for

Figure 1. Medical Database Hierarchy

Storing and Processing Information

Chapter 1. Designing an Application: Introductory Concepts 3



example, contains all the information that relates strictly to the patient: the
patient's identification number, name, and address.

Definitions: A segment is the smallest unit of data that an application program can
retrieve from the database. A field is the smallest unit of a segment.

The PATIENT segment in the medical database is the root segment. The segments
below the root segment are the dependents, or children, of the root. For example,
ILLNESS, BILLING, and HOUSHOLD are all children of PATIENT. ILLNESS,
BILLING, and HOUSHOLD are called direct dependents of PATIENT; TREATMNT
and PAYMENT are also dependents of PATIENT, but they are not direct
dependents, because they are at a lower level in the hierarchy.

A database record is a single root segment (root segment occurrence) and all of its
dependents. In the medical example, a database record is all of the information
about one patient.

Definitions: A root segment is the highest-level segment. A dependent is a segment
below a root segment. A root segment occurrence is a database record and all of its
dependents.

Each database record has only one root segment occurrence, but it might have
several occurrences at lower levels. For example, the database record for a patient
contains only one occurrence of the PATIENT segment type, but it might contain
several ILLNESS and TREATMNT segment occurrences for that patient.

Your Program's View of the Data
IMS uses two kinds of control blocks to enable application programs to be
independent of your method of storing data in the database, the database
description (DBD), and the database program communication block (DB PCB).

Database Description (DBD)
A database description (DBD) is a control block that describes the physical structure
of the database. The DBD also defines the appearance and contents, or fields, that
make up each of the segment types in the database.

For example, the DBD for the medical database hierarchy shown in Figure 1 on
page 3 describes the physical structure of the hierarchy and each of the six
segment types in the hierarchy: PATIENT, ILLNESS, TREATMNT, BILLING,
PAYMENT, and HOUSHOLD.

Related Reading: For more information on generating DBDs, see IMS Version 9:
Utilities Reference: Database and Transaction Manager.

Database Program Communication Block (DB PCB)
A database program communication block (DB PCB) defines an application program's
view of the database. An application program often needs to process only some of
the segments in a database. A PCB defines which of the segments in the database
the program is allowed to access—which segments the program is sensitive to.

The data structures that are available to the program contain only segments that
the program is sensitive to. The PCB also defines how the application program is
allowed to process the segments in the data structure: whether the program can
only read the segments, or whether it can also update them.

Storing and Processing Information

4 Application Programming: Design Guide



To obtain the highest level of data availability, your PCBs should request the
fewest number of sensitive segments and the least capability needed to complete
the task.

All the DB PCBs for a single application program are contained in a program
specification block (PSB). A program might use only one DB PCB (if it processes only
one data structure) or it might use several DB PCBs, one for each data structure.

Related Reading: For more information on generating PSBs, see IMS Version 9:
Utilities Reference: Database and Transaction Manager.

Figure 2 illustrates the concept of defining a view for an application program. An
accounting program that calculates and prints bills for the clinic's patients would
need only the PATIENT, BILLING, and PAYMENT segments. You could define the
data structure shown in Figure 2 in a DB PCB for this program.

A program that updates the database with information on patients' illnesses and
treatments, in contrast, would need to process the PATIENT, ILLNESS, and
TREATMNT segments. You could define the data structure shown in Figure 3 for
this program.

Figure 2. Accounting Program's View of the Database

Figure 3. Patient Illness Program's View of the Database

Storing and Processing Information

Chapter 1. Designing an Application: Introductory Concepts 5



Sometimes a program needs to process all of the segments in the database. When
this is true, the program's view of the database as defined in the DB PCB is the
same as the database hierarchy that is defined in the DBD.

An application program processes only the segments in a database that it requires;
therefore, if you change the format of a segment that is not processed, you do not
change the program. A program is affected only by the segments that it accesses. In
addition to being sensitive to only certain segments in a database, a program can
also be sensitive to only certain fields within a segment. If you change a segment
or field that the program is not sensitive to, it does not affect the program. You
define segment and field-level sensitivity during PSBGEN.

Definition: Field-level sensitivity is when a program is sensitive to only certain
fields within a segment.

Related Reading: For more information, see IMS Version 9: Administration Guide:
Database Manager.

Processing a Database Record
To process the information in the database, your application program
communicates with IMS in three ways:
v Passing control—IMS passes control to your application program through an

entry statement in your program. Your program returns control to IMS when it
has finished its processing.
When you are running a CICS online program, CICS passes control to your
application program, and your program schedules a PSB to make IMS requests.
Your program returns control to CICS. If you are running a batch or BMP
program, IMS passes control to your program with an existing PSB scheduled.

v Communicating processing requests—You communicate processing requests to
IMS in one of two ways:
– In IMS, you issue DL/I calls to process the database.
– In CICS, you can issue either DL/I calls or EXEC DLI commands. EXEC DLI

commands more closely resemble a higher-level language than do DL/I calls.
v Exchanging information using DL/I calls—Your program exchanges information

in two areas:
– A DL/I call reports the results of your request in a control block and the AIB

communication block when using one of the AIB interfaces. For programs
written using DL/I calls, this control block is the DB PCB. For programs
written using EXEC DLI commands, this control block is the DLI interface
block (DIB). The contents of the DIB reflect the status of the last DL/I
command executed in the program. Your program includes a mask of the
appropriate control block and uses this mask to check the results of the
request.

– When you request a segment from the database, IMS returns the segment to
your I/O area. When you want to update a segment in the database, you
place the new value of the segment in the I/O area.

An application program can read and update a database. When you update a
database, you can replace, delete, or add segments. In IMS, you indicate in the
DL/I call the segment you want to process, and whether you want to read or
update it. In CICS, you can indicate what you want using either a DL/I call or an
EXEC DLI command.

Storing and Processing Information

6 Application Programming: Design Guide



A Look at the Tasks Ahead of You
The tasks in these topics are involved in developing an IMS application, and the
programs that are part of the application.

Designing the Application
Application program design varies from place to place, and from one application
to another. Therefore, this information does not try to cover the early tasks that are
part of designing an application program. Instead, it covers only the tasks that you
are concerned with after the early specifications for the application have been
developed. These tasks are:

Analyzing Application Data Requirements

Two important parts of application design are defining the data that each of the
business processes in the application requires and designing a local view for
each of the business processes. Chapter 2, “Designing an Application: Data and
Local Views,” on page 9 explains these tasks.
Analyzing Application Processing Requirements

When you understand the business processes that are part of the application,
you can analyze the requirements of each business process in terms of the
processing that is available with different types of application programs.
Chapter 3, “Analyzing IMS Application Processing Requirements,” on page 29
and Chapter 4, “Analyzing CICS Application Processing Requirements,” on
page 51 explain the processing and application requirements that each type of
program satisfies.
Gathering Requirements for Database Options

You then need to look at the database options that can most efficiently meet the
requirements, and gather information about your application's data
requirements that relates to each of the options. Chapter 5, “Gathering
Requirements for Database Options,” on page 69 explains these options and
helps you gather information about your application that will be helpful to the
database administrator in making informed decisions about database options.
Gathering Requirements for Message Processing Options

If your application communicates with terminals and other application
programs, look at the message processing options and the requirements they
satisfy. Chapter 6, “Gathering Requirements for Message Processing Options,”
on page 93 explains the IMS message processing options and helps you to
gather information about your application that is helpful in choosing message
processing options.
Related Reading:

– For more information about designing a CICS application, see CICS/ESA
Application Programming Guide.

– For more information about designing a Java application, see IMS Version 9:
IMS Java Guide and Reference.

Developing Specifications
Developing specifications involves defining what your application will do, and
how it will be done. This task depends completely on the specific application and
your standards and so, is not described in this information.

Tasks Ahead of You

Chapter 1. Designing an Application: Introductory Concepts 7



Implementing the Design
When the specifications for each of the programs in the application are developed,
you can structure and code the programs according to those specifications. The
subtasks are:

Writing the Database Processing Part of the Program

When the program design is complete, you can structure and code your
requests and data areas based on the programming specifications that have
been developed.
Related Reading: The following books contain information about writing a
program’s database processing.
– IMS Version 9: Application Programming: Database Manager

– IMS Version 9: Application Programming: EXEC DLI Commands for CICS and
IMS

Writing the Message Processing Part of the Program

If you are writing a program that communicates with terminals and other
programs, you need to structure and code the message processing part of the
program.
Related Reading: For more information about writing programs for message
processing, see IMS Version 9: Application Programming: Transaction Manager.
Analyzing APPC/IMS Requirements

The LU 6.2 feature of IMS TM enables your application to be distributed
throughout the network. Chapter 7, “Designing an Application for APPC,” on
page 105 tells how to use LU 6.2 and the IMS TM application programs. This
section describes the considerations for modifying these application programs
to communicate with other application programs and shows the results of
conversations.
Testing an Application Program

When you finish coding your program, test it by itself and then as part of a
system. Chapter 9, “Testing an IMS Application Program,” on page 143 and
Chapter 10, “Testing a CICS Application Program,” on page 165 give you some
guidelines.
Documenting an Application Program

Documenting a program continues throughout the project and is most effective
when done incrementally. When the program is completely tested, information
must be suppled to those who use and maintain your program. Chapter 12,
“Documenting an Application Program,” on page 181 gives you some
suggestions about the information you should record about your program.

Tasks Ahead of You

8 Application Programming: Design Guide



Chapter 2. Designing an Application: Data and Local Views

Designing an application that meets the requirements of end users involves a
variety of tasks and, usually, people from several departments. Application design
begins when a department or business area communicates a need for some type of
processing. Application design ends when each of the parts of the application
system—for example, the programs, the databases, the display screens, and the
message formats—have been designed.

The following topics provide additional information:
v “An Overview of Application Design”
v “Identifying Application Data” on page 11
v “Designing a Local View” on page 16

An Overview of Application Design
The application design process varies from place to place and from application to
application. The overview that is given in this section and the suggestions about
documenting application design and converting existing applications are not the
only way that these tasks are performed.

The purpose of this overview is to give you a frame of reference so that you can
understand where the techniques and guidelines explained in this section fit into
the process. The order in which you perform the tasks described here, and the
importance you give to each one, depend on your settings. Also, the individuals
involved in each task, and their titles, might differ depending on the site. The tasks
are as follows:
v Establish your standards

Throughout the design process, be aware of your established standards. Some of
the areas that standards are usually established for are:
– Naming conventions (for example, for databases and terminals)
– Formats for screens and messages
– Control of and access to the database
– Programming and conventions (for common routines and macros)

Setting up standards in these areas is usually an ongoing task that is the
responsibility of database and system administrators.

v Follow your security standards
Security protects your resources from unauthorized access and use. As with
defining standards, designing an adequate security system is often an ongoing
task. As an application is modified or expanded, often the security must be
changed in some way also. Security is an important consideration in the initial
stages of application design.
Establishing security standards and requirements is usually the responsibility of
system administration. These standards are based on the requirements of your
applications.
Some security concerns are:
– Access to and use of the databases
– Access to terminals

© Copyright IBM Corp. 1974, 2011 9



– Distribution of application output
– Control of program modification
– Transaction and command entry
Related Reading: “Providing Data Security” on page 85 and “Identifying Online
Security Requirements” on page 93 give some suggestions about the kind of
information that you can gather concerning the security requirements for your
application. This information can be helpful to database administration and
system administration in implementing database and data communications
security.

v Define application data
Identifying the data that an application requires is a major part of application
design. One of the tasks of data definition is learning from end users what
information will be required to perform the required processing. After you have
listed the required data, you can name the data and document it. “Identifying
Application Data” on page 11 describes these parts of data definition.

v Provide input for database design
To design a database that meets the requirements of all the applications that will
process it, the database administrator (DBA) needs information about the data
requirements of each application. One way to gather and supply this
information is to design a local view for each of the business processes in your
application. A local view is a description of the data that a particular business
process requires.
Related Reading: “Designing a Local View” on page 16 explains how you can
develop a conceptual data structure and analyze the relationships between the
pieces of data in the structure for each business process in the application.

v Design application programs
When the overall application flow and system externals have been defined, you
define the programs that will perform the required processing. Some of the most
important considerations involved in this task are: standards, security
requirements, privacy requirements, and performance requirements. The
specifications you develop for the programs should include:
– Security requirements
– Input and output data formats and volumes
– Data verification and validation requirements
– Logic specifications
– Performance requirements
– Recovery requirements
– Linkage requirements and conventions
– Data availability considerations
In addition, you might be asked to provide some information about your
application to the people responsible for network and user interface design.

v Document the application design process
Recording information about the application design process is valuable to others
who work with the application now and in the future. One kind of information
that is helpful is information about why you designed the application the way
you did. This information can be helpful to people who are responsible for the
database, your IMS system, and the programs in the application—especially if
any part of the application must be changed in the future. Documenting
application design is done most thoroughly when it is done during the design
process, instead of at the end of it.

Overview of Application Design

10 Application Programming: Design Guide



v Convert an existing application
One of the main aspects in converting an existing application to IMS is to know
what already exists. Before starting to convert the existing system, find out
everything you can about the way it works currently. For example, the following
information can be of help to you when you begin the conversion:
– Record layouts of all records used by the application
– Number of data element occurrences for each data element
– Structure of any existing related databases

Identifying Application Data
Two important aspects of application design are identifying the application data
and describing the data that a particular business process requires.

One of the steps of identifying application data is to thoroughly understand the
processing the user wants performed. You need to understand the input data and
the required output data in order to define the data requirements of the
application. You also need to understand the business processes that are involved
in the user's processing needs. Three of the tasks involved in identifying
application data are:
v Listing the data required by the business process
v Naming the data
v Documenting the data

When analyzing the required application data, you can categorize the data as
either an entity or a data element.

Definitions: An entity is anything about which information can be stored. A data
element is the smallest named unit of data pertaining to an entity. It is information
that describes the entity.

Example: In an education application, “students” and “courses” are both entities;
these are two subjects about which you collect and process data. Table 2 shows
some data elements that relate to the student and course entities. The entity is
listed with its related data elements.

Table 2. Entities and Data Elements

Entity Data Elements

Student Student Name

Student Number

Course Course Name

Course Number

Course Length

When you store this data in an IMS database, groups of data elements are potential
segments in the hierarchy. Each data element is a potential field in that segment.

The following topics provide additional information:
v “Listing Data Elements” on page 12
v “Naming Data Elements” on page 13
v “Documenting Application Data” on page 14

Overview of Application Design

Chapter 2. Designing an Application: Data and Local Views 11



Listing Data Elements
Example: To identify application data, consider a company that provides technical
education to its customers. The education company has one headquarters office,
called Headquarters, and several local education centers, called Ed Centers.

A class is a single offering of a course on a specific date at a particular Ed Center.
One course might have several offerings at different Ed Centers; each of these is a
separate class. Headquarters is responsible for developing all the courses that will
be offered, and each Ed Center is responsible for scheduling classes and enrolling
students for its classes.

Suppose that one of the education company's requirements is for each Ed Center to
print weekly current rosters for all classes at the Ed Center. The current roster is to
give information about the class and the students enrolled in the class.
Headquarters wants the current rosters to be in the format shown in Figure 4.

To list the data elements for a particular business process, look at the required
output. The current roster shown in Figure 4 is the roster for the class, “Transistor
Theory” to be given in the Chicago Ed Center, starting on January 14, 2004, for ten
days. Each course has a course code associated with it—in this case, 41837. The
code for a particular course is always the same. For example, if Transistor Theory
is also offered in New York, the course code is still 41837. The roster also gives the
names of the instructors who are teaching the course. Although the example only
shows one instructor, a course might require more than one instructor.

For each student, the roster keeps the following information: a sequence number
for each student, the student's name, the student's company (CUST), the company's
location, the student's status in the class, and the student's absences and grade. All
the above information on the course and the students is input information.

The current date (the date that the roster is printed) is displayed in the upper right
corner (01/04/04). The current date is an example of data that is output only data;
it is generated by the operating system and is not stored in the database.

The bottom-left corner gives a summary of the class status. This data is not
included in the input data. These values are determined by the program during
processing.

CHICAGO 01/04/04

TRANSISTOR THEORY 41837
10 DAYS
INSTRUCTOR(S): BENSON, R.J. DATE: 01/14/04

STUDENT CUST LOCATION STATUS ABSENT GRADE
1.ADAMS, J.W. XYZ SOUTH BEND, IND CONF
2.BAKER, R.T. ACME BENTON HARBOR, MICH WAIT
3.DRAKE, R.A. XYZ SOUTH BEND, IND CANC

.

.

.
33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF

CONFIRMED = 30
WAIT—LISTED = 1
CANCELED = 2

Figure 4. Current Roster for Technical Education Example

Identifying Application Data

12 Application Programming: Design Guide



When you list the data elements, abbreviating them is helpful, because you will be
referring to them frequently when you design the local view.

The data elements list for current roster is:

EDCNTR Name of Ed Center giving class

DATE Date class starts

CRSNAME Name of course

CRSCODE Course code

LENGTH Length of course

INSTRS Names of instructors teaching class

STUSEQ# Student's sequence number

STUNAME Student's name

CUST Name of student's company

LOCTN Location of student's company

STATUS Student's status in class—confirmed, wait list, or cancelled

ABSENCE Number of days student was absent

GRADE Student's grade for the course

After you have listed the data elements, choose the major entity that these
elements describe. In this case, the major entity is class. Although a lot of
information exists about each student and some information exists about the
course in general, together all this information relates to a specific class. If the
information about each student (for example, status, absence, and grade) is not
related to a particular class, the information is meaningless. This holds true for the
data elements at the top of the list as well: The Ed Center, the date the class starts,
and the instructor mean nothing unless you know what class they describe.

Naming Data Elements
Some of the data elements your application uses might already exist and be
named. After you have listed the data elements, find out if any of them exist by
checking with your database administrator (DBA).

Before you begin naming data elements, be aware of the naming standards that
you are subject to. When you name data elements, use the most descriptive names
possible. Remember that, because other applications probably use at least some of
the same data, the names should mean the same thing to everyone. Try not to limit
the name's meaning only to your application.

Recommendation: Use global names rather than local names. A global name is a
name whose meaning is clear outside of any particular application. A local name is
a name that, to be understood, must be seen in the context of a particular
application.

One of the problems with using local names is that you can develop synonyms,
two names for the same data element.

Example: In the current roster example, suppose the student's company was
referred to simply as “company” instead of “customer”. But suppose the
accounting department for the education company used the same piece of data in

Identifying Application Data

Chapter 2. Designing an Application: Data and Local Views 13



a billing application—the name of the student's company—and referred to it as
“customer”. This would mean that two business processes were using two different
names for the same piece of data. At worst, this could lead to redundant data if no
one realized that “customer” and “company” contained the same data. To solve
this, use a global name that is recognized by both departments using this data
element. In this case, “customer” is more easily recognized and the better choice.
This name uniquely identifies the data element and has a specific meaning within
the education company.

When you choose data element names, use qualifiers so that each name can mean
only one thing.

Example: Suppose Headquarters, for each course that is taught, assigns a number
to the course as it is developed and calls this number the “sequence number”. The
Ed Centers, as they receive student enrollments for a particular class, assign a
number to each student as a means of identification within the class. The Ed
Centers call this number the “sequence number”. Thus Headquarters and the Ed
Centers are using the same name for two separate data elements. This is called a
homonym. You can solve the homonym problem by qualifying the names. The
number that Headquarters assigns to each course can be called “course code”
(CRSCODE), and the number that the Ed Centers assign to their students can be
called “student sequence number” (STUSEQ#).

Definition: A homonym is one word for two different things.

Choose data element names that identify the element and describe it precisely.
Make your data element names:

Unique The name is clearly distinguishable from other
names.

Self-explanatory The name is easily understood and recognized.

Concise The name is descriptive in a few words.

Universal The name means the same thing to everyone.

Documenting Application Data
After you have determined what data elements a business process requires, record
as much information about each of the data elements as possible. This information
is useful to the DBA. Be aware of any standards that you are subject to regarding
data documentation. Many places have standards concerning what information
should be recorded about data and how and where that information should be
recorded. The amount and type of this information varies from place to place. The
following list is the type of information that is often recorded.

The descriptive name of the data element
Data element names should be precise, yet they should be meaningful to
people who are familiar and also to those who are unfamiliar with the
application.

The length of the data element
The length of the data element determines segment size and segment
format.

The character format
The programmer needs to know if the data is alphanumeric, hexadecimal,
packed decimal, or binary.

Identifying Application Data

14 Application Programming: Design Guide



The range of possible values for the element
The range of possible values for the element is important for validity
checking.

The default value
The programmer also needs the default value.

The number of data element occurrences
The number of data element occurrences helps the DBA to determine the
required space for this data, and it affects performance considerations.

How the business process affects the data element
Whether the data element is read or updated determines the processing
option that is coded in the PSB for the application program.

You should also record control information about the data. Such information
should address the following questions:
v What action should the program take when the data it attempts to access is not

available?
v If the format of a particular data element changes, which business processes

does that affect? For example, if an education database has as one of its data
elements a five-digit code for each course, and the code is changed to six digits,
which business processes does this affect?

v Where is the data now? Know the sources of the data elements required by the
application.

v Which business processes make changes to a particular data element?
v Are there security requirements about the data in your application? For example,

you would not want information such as employees' salaries available to
everyone?

v Which department owns and controls the data?

One way to gather and record this information is to use a form similar to the one
shown in Table 3. The amount and type of data that you record depends on the
standards that you are subject to. For example, Table 3 lists the ID number, data
element name, length, the character format, the allowed, null, default values, and
the number of occurrences.

Table 3. Example of Data Elements Information Form

ID #

Data
Element
Name Length

Char.
Format Allowed Values

Null
Values

Default
Value Number of Occurrences

5 Course
Code

5 bytes Hexa-
decimal

0010090000 00000 N/A There are 200 courses in
the curriculum. An
average of 10 are new or
revised per year. An
average of 5 are dropped
per year.

25 Status 4 bytes Alpha-
numeric

CONF WAIT
CANC

blanks WAIT 1 per student

36 Student
Name

20 bytes Alpha-
numeric

Alpha only blanks N/A There are 3–100 students
per class with an average
of 40 per class.

A data dictionary is a good place to record the facts about the application's data.
When you are analyzing data, a dictionary can help you find out whether a

Identifying Application Data

Chapter 2. Designing an Application: Data and Local Views 15



particular data element already exists, and if it does, its characteristics. With the
DB/DC Data Dictionary, and its successor, DataAtlas (a part of the IBM VisualGen
Team Suite), you can determine online what segments exist in a particular database
and what fields those segments contain. You can use either tool to create reports
involving the same information.

Related Reading: For information on these products, see
v OS/VS DB/DC Data Dictionary Applications Guide

v VisualGen V2R0.0 Introducing

v VisualGen: Running Application on MVS

Designing a Local View
A local view is a description of the data that an individual business process
requires. It includes the following:
v A list of the data elements
v A conceptual data structure that shows how you have grouped data elements by

the entities that they describe
v The relationships between each of the groups of data elements

Definitions: A data aggregate is a group of data elements. When you have grouped
data elements by the entity they describe, you can determine the relationships
between the data aggregates. These relationships are called mappings. Based on the
mappings, you can design a conceptual data structure for the business process. You
should document this process as well.

Analyzing Data Relationships
When you analyze data relationships, you are developing conceptual data
structures for the business processes in your application. This process, called data
structuring, is a way to analyze the relationships among the data elements a
business process requires, not a way to design a database. The decisions about
segment formats and contents belong to the DBA. The information you develop is
input for designing a database.

Data structuring can be done in many different ways. The method explained in
this section is one example.

The following topics provide additional information:
v “Grouping Data Elements into Hierarchies”
v “Determining Mappings” on page 21

Grouping Data Elements into Hierarchies
The data elements that describe a data aggregate, the student, might be
represented by the descriptive names STUSEQ#, STUNAME, CUST, LOCTN,
STATUS, ABSENCE, and GRADE. We call this group of data elements the student
data aggregate.

Data elements have values and names. In the student data elements example, the
values are a particular student's sequence number, the student's name, company,
company location, the student's status in the class, the student's absences, and
grade. The names of the data aggregate are not unique—they describe all the

Identifying Application Data

16 Application Programming: Design Guide



students in the class in the same terms. The combined values, however, of a data
aggregate occurrence are unique. No two students can have the same values in
each of these fields.

As you group data elements into data aggregates and data structures, look at the
data elements that make up each group and choose one or more data elements that
uniquely identify that group. This is the data aggregate's controlling key, which is
the data element or group of data elements in the aggregate that uniquely
identifies the aggregate. Sometimes you must use more than one data element for
the key in order to uniquely identify the aggregate.

By following the three steps explained in this section, you can develop a
conceptual data structure for a business process's data. However, you are not
developing the logical data structure for the program that performs the business
process. The three steps are:
1. Separate repeating data elements in a single occurrence of the data aggregate.
2. Separate duplicate values in multiple occurrences of the data aggregate.
3. Group each data element with its controlling keys.

Step 1. Separating Repeating Data Elements: Look at a single occurrence of the
data aggregate. Table 4 shows what this looks like for the class aggregate; the data
element is listed with the class aggregate occurrence.

Table 4. Single Occurrence of Class Aggregate

Data Element Class Aggregate Occurrence

EDCNTR CHICAGO

DATE(START) 1/14/96

CRSNAME TRANSISTOR THEORY

CRS CODE 41837

LENGTH 10 DAYS

INSTRS multiple

STUSEQ# multiple

STUNAME multiple

CUST multiple

LOCTN multiple

STATUS multiple

ABSENCE multiple

GRADE multiple

The data elements defined as multiple are the elements that repeat. Separate the
repeating data elements by shifting them to a lower level. Keep data elements with
their controlling keys.

The data elements that repeat for a single class are: STUSEQ#, STUNAME, CUST,
LOCTN, STATUS, ABSENCE, and GRADE. INSTRS is also a repeating data
element, because some classes require two instructors, although this class requires
only one.

When you separate repeating data elements into groups, you have the structure
shown in Figure 5 on page 18.

Designing a Local View

Chapter 2. Designing an Application: Data and Local Views 17

|
|



In Figure 5, the data elements in each box form an aggregate. The entire figure
depicts a data structure. The data elements include the Course aggregate, the
Student aggregate, and the Instructor aggregate.

Figure 5 shows these aggregates with the keys indicated with leading asterisks (*).

The keys for the data aggregates are shown in Table 5.

Table 5. Data Aggregates and Keys for Current Roster after Step 1

Data Aggregate Keys

Course aggregate EDCNTR, DATE, CRSCODE

Student aggregate EDCNTR, DATE, CRSCODE, STUSEQ#

Instructor aggregate EDCNTR, DATE, CRSCODE, INSTRS

The asterisks in Figure 5 identify the key data elements. For the Class aggregate, it
takes multiple data elements to identify the course, so you need multiple data
elements to make up the key. The data elements that comprise the Class aggregate
are:
v Controlling key element, STUSEQ#
v STUNAME
v CUST
v LOCTN
v STATUS
v ABSENCE

Along with these keys inherited from the root segment, Course aggregate:
v GRADE
v EDCNTR
v DATE
v CRSCODE

Figure 5. Current Roster after Step 1

Designing a Local View

18 Application Programming: Design Guide

|
|
|



The data elements that comprise the Instructor aggregate are:
v Key element, INSTRS

Along with these Keys inherited from the root segment, Course aggregate:
v EDCNTR
v DATE
v CRSCODE

After you have shifted repeating data elements, make sure that each element is in
the same group as its controlling key. INSTRS is separated from the group of data
elements describing a student because the information about instructors is
unrelated to the information about the students. The student sequence number
does not control who the instructor is.

In the example shown in Figure 5 on page 18, the Student aggregate and Instructor
aggregate are both dependents of the Course aggregate. A dependent aggregate's
key includes the concatenated keys of all the aggregates above the dependent
aggregate. This is because a dependent's controlling key does not mean anything if
you don't know the keys of the higher aggregates. For example, if you knew that a
student's sequence number was 4, you would be able to find out all the
information about the student associated with that number. This number would be
meaningless, however, if it were not associated with a particular course. But,
because the key for the Student aggregate is made up of Ed Center, date, and
course code, you can deduce which class the student is in.

Step 2. Isolating Duplicate Aggregate Values: Look at multiple occurrences of
the aggregate—in this case, the values you might have for two classes. Table 6
shows multiple occurrences (2) of the same data elements. As you look at this
table, check for duplicate values. Remember that both occurrences describe one
course.

Table 6. Multiple Occurrences of Class Aggregate

Data Element List Occurrence 1 Occurrence 2

EDCNTR CHICAGO NEW YORK

DATE(START) 1/14/96 3/10/96

CRSNAME TRANS THEORY TRANS THEORY

CRSCODE 41837 41837

LENGTH 10 DAYS 10 DAYS

INSTRS multiple multiple

STUSEQ# multiple multiple

STUNAME multiple multiple

CUST multiple multiple

LOCTN multiple multiple

STATUS multiple multiple

ABSENCE multiple multiple

GRADE multiple multiple

The data elements defined as multiple are the data elements that repeat. The
values in these elements are not the same. The aggregate is always unique for a
particular class.

Designing a Local View

Chapter 2. Designing an Application: Data and Local Views 19



In this step, compare the two occurrences and shift the fields with duplicate values
(TRANS THEORY and so on) to a higher level. If you need to, choose a controlling
key for aggregates that do not yet have keys.

In Table 6 on page 19, CRSNAME, CRSCODE, and LENGTH are the fields that
have duplicate values. Much of this process is intuitive. Student status and grade,
although they can have duplicate values, should not be separated because they are
not meaningful values by themselves. These values would not be used to identify a
particular student. This becomes clear when you remember to keep data elements
with their controlling keys. When you separate duplicate values, you have the
structure shown in Figure 6.

Step 3. Grouping Data Elements with their Controlling Keys: This step is often
a check on the first two steps. (Sometimes the first two steps have already done
what this step instructs you to do.)

At this stage, make sure that each data element is in the group that contains its
controlling key. The data element should depend on the full key. If the data
element depends only on part of the key, separate the data element along with the
partial (controlling) key on which it depends.

In this example, CUST and LOCTN do not depend on the STUSEQ#. They are
related to the student, but they do not depend on the student. They identify the
company and company address of the student.

CUST and LOCTN are not dependent on the course, the Ed Center, or the date,
either. They are separate from all of these things. Because a student is only
associated with one CUST and LOCTN, but a CUST and LOCTN can have many
students attending classes, the CUST and LOCTN aggregate should be above the
student aggregate.

Figure 6. Current Roster after Step 2

Designing a Local View

20 Application Programming: Design Guide



Figure 7 shows these aggregates and keys indicated with leading asterisks (*).
Figure 7 shows what the structure looks like when you separate CUST and
LOCTN.

The keys for the data aggregates are shown in Table 7.

Table 7. Data Aggregates and Keys for Current Roster after Step 3

Data Aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

Customer aggregate CUST, LOCTN

Student aggregate (when viewed from the customer aggregate in
Figure 7 instead of from the course aggregate, in
Figure 6 on page 20) CUST, LOCTN, STUSEQ,
CRSCODE, EDCNTR, DATE

Instructor aggregate CRSCODE, EDCNTR, DATE, INSTRS

Deciding on the arrangement of the customer and location information is part of
designing a database. Data structuring should separate any inconsistent data
elements from the rest of the data elements.

Determining Mappings
When you have arranged the data aggregates into a conceptual data structure, you
can examine the relationships between the data aggregates. A mapping between
two data aggregates is the quantitative relationship between the two. The reason
you record mappings is that they reflect relationships between segments in the
data structure that you have developed. If you store this information in an IMS
database, the DBA can construct a database hierarchy that satisfies all the local
views, based on the mappings. In determining mappings, it is easier to refer to the
data aggregates by their keys, rather than by their collected data elements.

The two possible relationships between any two data aggregates are:

Figure 7. Current Roster after Step 3

Designing a Local View

Chapter 2. Designing an Application: Data and Local Views 21



v One-to-many
For each segment A, one or more occurrences of segment B exist. For example,
each class maps to one or more students.
Mapping notation shows this in the following way:

Class �────────�� Student

v Many-to-many
Segment B has many A segments associated with it and segment A has many B
segments associated with it. In a hierarchic data structure, a parent can have one
or more children, but each child can be associated with only one parent. The
many-to-many association does not fit into a hierarchy, because in a
many-to-many association each child can be associated with more than one
parent.
Related Reading: For more information about analyzing data requirements, see
IMS Version 9: Administration Guide: Database Manager

Many-to-many relationships occur between segments in two business processes.
A many-to-many relationship indicates a conflict in the way that two business
processes need to process those data aggregates. If you use the IMS full-function
database, you can solve this kind of processing conflict by using secondary
indexing or logical relationships. “Understanding How Data Structure Conflicts
Are Resolved” on page 77 explains how to use these tools.

The mappings for the current roster are:
v Course �────────�� Class

For each course, there might be several classes scheduled, but a class is
associated with only one course.

v Class �────────�� Student

A class has many students enrolled in it, but a student might be in only one
class offering of this course.

v Class �────────�� Instructor

A class might have more than one instructor, but an instructor only teaches one
class at a time.

v Customer/location �────────�� Student

A customer might have several students attending a particular class, but each
student is only associated with one customer and location.

Local View Examples
This topic presents three more examples of designing a local view:
v The schedule of courses
v The instructor skills report
v The instructor schedules

This topic does not explain how to design a local view; it simply takes you
through the examples. Each example shows the following parts of designing a local
view:
1. Gather the data. For each example, the data elements are listed and two

occurrences of the data aggregate are shown. Two occurrences are shown
because you need to look at both occurrences when you look for repeating
fields and duplicate values.

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure using these three steps:

Designing a Local View

22 Application Programming: Design Guide



a. Separate repeating data elements in a single occurrence of the data
aggregate by shifting them to a lower level. Keep data elements with their
keys.

b. Separate duplicating values in two occurrences of the data aggregate by
shifting those data elements to a higher level. Again, keep data elements
with their keys.

c. Group data elements with their keys. Make sure that all the data elements
within one aggregate have the same key. Separate any that do not.

3. Determine the mappings between the data aggregates in the data structure you
have developed.

Example 1: Schedule of Courses
Headquarters keeps a schedule of all the courses given each quarter and
distributes it monthly. Headquarters wants the schedule to be sorted by course
code and printed in the format shown in Figure 8.

1. Gather the data. Table 8 lists the data elements and two occurrences of the data
aggregate.

Table 8. Course Schedule Data Elements

Data Elements Occurrence 1 Occurrence 2

CRSNAME TRANS THEORY MICRO PROG

CRSCODE 41837 41840

LENGTH 10 DAYS 5 DAYS

PRICE $280 $150

DATE multiple multiple

EDCNTR multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.
a. Separate repeating data elements in one occurrence of the data aggregate by

shifting them to a lower level, as shown in Figure 9 on page 24

COURSE SCHEDULE

COURSE: TRANSISTOR THEORY COURSE CODE: 418737
LENGTH: 10 DAYS PRICE: $280

DATE LOCATION

APRIL 14 BOSTON
APIRL 21 CHICAGO
.
.
.
NOVEMBER 18 LOS ANGELES

Figure 8. Schedule of Courses

Designing a Local View

Chapter 2. Designing an Application: Data and Local Views 23



b. Next, separate duplicate values in two occurrences of the data aggregate by
shifting the data elements to a higher level.
This data aggregate does not contain duplicate values.

c. Group data elements with their controlling keys.
Data elements are grouped with their keys in the present structure. No
changes are necessary for this step.
The keys for the data aggregates are shown in Table 9.

Table 9. Data Aggregates and Keys for Course Schedule after Step 1

Data Aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

3. When you have developed a conceptual data structure, determine the
mappings for the data aggregates.
The mapping for this local view is:
Course �────────�� Class

Example 2: Instructor Skills Report
Each Ed Center needs to print a report showing the courses that its instructors are
qualified to teach. The report format is shown in Figure 10.

1. Gather the data. Table 10 on page 25 lists the data elements and two
occurrences of the data aggregate.

Figure 9. Course Schedule after Step 1

INSTRUCTOR SKILLS REPORT

INSTRUCTOR COURSE CODE COURSE NAME

BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY

41850 CIRCUIT DESIGN
41852 LOGIC THEORY

.

.

.
REYNOLDS, P. W. 41840 MICRO PROG

41850 CIRCUIT DESIGN

Figure 10. Instructor Skills Report

Designing a Local View

24 Application Programming: Design Guide



Table 10. Instructor Skills Data Elements

Data Elements Occurrence 1 Occurrence 2

INSTR REYNOLDS, P.W. MORRIS, S. R.

CRSCODE multiple multiple

CRSNAME multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.
a. Separate repeating data elements in one occurrence of the data aggregate by

shifting to a higher level as shown in Figure 11

b. Separate any duplicate values in the two occurrences of the data aggregate.
No duplicate values exist in this data aggregate.

c. Group data elements with their keys.
All data elements are grouped with their keys in the current data structure.
There are no changes to this data structure.

3. Determine the mappings for the data aggregates.
The mapping for this local view is:
Instructor �────────�� Course

Example 3: Instructor Schedules
Headquarters wants to produce a report showing the schedules for all the
instructors. Figure 12 shows the report format.

1. Gather the data. Table 11 lists the data elements and two occurrences of the
data aggregate.

Table 11. Instructor Schedules Data Elements

Data Elements Occurrence 1 Occurrence 2

INSTR BENSON, R. J. MORRIS, S. R.

Figure 11. Instructor Skills after Step 1

INSTRUCTOR SCHEDULES

INSTRUCTOR COURSE CODE ED CENTER DATE

BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/14/96
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 3/10/96

LOGIC THEORY 41852 BOSTON 3/27/96
CIRCUIT DES 41840 CHICAGO 4/21/96

REYNOLDS, B. H. MICRO PROG 41850 NEW YORK 2/25/96
CIRCUIT DES 41850 LOS ANGELES 3/10.96

Figure 12. Instructor Schedules

Designing a Local View

Chapter 2. Designing an Application: Data and Local Views 25



Table 11. Instructor Schedules Data Elements (continued)

Data Elements Occurrence 1 Occurrence 2

CRSNAME multiple multiple

CRSCODE multiple multiple

EDCNTR multiple multiple

DATE(START) multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.
a. Separate repeating data elements in one occurrence of the data aggregate by

shifting data elements to a lower level as shown in Figure 13.

b. Separate duplicate values in two occurrences of the data aggregate by
shifting data elements to a higher level as shown in Figure 14.
In this example, CRSNAME and CRSCODE can be duplicated for one
instructor or for many instructors, for example, 41837 for Benson and 41850
for Morris and Reynolds.

c. Group data elements with their keys.
All data elements are grouped with their controlling keys in the current
data structure. No changes to the current data structure are required.

3. Determine the mappings for the data aggregates.

Figure 13. Instructor Schedules Step 1

Figure 14. Instructor Schedules Step 2

Designing a Local View

26 Application Programming: Design Guide



The mappings for this local view are:
Instructor �────────�� Course
Course �────────�� Class

An analysis of data requirements is necessary to combine the requirements of
the three examples presented in this section and to design a hierarchic structure
for the database based on these requirements.
Related Reading: For more information on analyzing data requirements, see
IMS Version 9: Administration Guide: Database Manager.

Designing a Local View

Chapter 2. Designing an Application: Data and Local Views 27



Designing a Local View

28 Application Programming: Design Guide



Chapter 3. Analyzing IMS Application Processing
Requirements

This chapter assumes you are writing application programs for IMS environments
and explains the kinds of application programs that IMS supports and the
requirements that each satisfies.

The following topics provide additional information:
v “Deciding Your IMS Application’s Requirements”
v “Accessing Databases With Your IMS Application Program” on page 30
v “Accessing Data: The Types of Programs You Can Write for Your IMS

Application” on page 32
v “IMS Programming Integrity and Recovery Considerations” on page 40
v “Dynamic Allocation for IMS Databases” on page 49

Related Reading: For information on writing CICS application programs, see
Chapter 4, “Analyzing CICS Application Processing Requirements,” on page 51.

Deciding Your IMS Application’s Requirements
One of the steps of application design is to decide how the business processes, or
tasks, that the end user wants performed can be best grouped into a set of
programs that efficiently performs the required processing. To analyze processing
requirements, consider:

When the task must be performed

– Will the task be scheduled unpredictably (for example, on terminal demand)
or periodically (for example, weekly)?

How the program that performs the task is executed

– Will the program be executed online, where response time is crucial, or by
batch job submission, where a slower response time is acceptable?

The consistency of the processing components

– Does the action the program is to perform involve more than one type of
program logic? For example, does it involve mostly retrievals and only one
or two updates? If so, you should consider separating the updates into a
separate program.

– Does this action involve several large groups of data? If it does, it might be
more efficient to separate the programs by the data they access.

Any special requirements about the data or processing

Security Should access to the program be restricted?

Recovery Are there special recovery considerations in the program's
processing?

Availability Does your application require high data availability?

Integrity Do other departments use the same data?

Answers to questions like these can help you decide on the number of application
programs that the processing will require, and on the types of programs that

© Copyright IBM Corp. 1974, 2011 29



perform the processing most efficiently. Although rules dealing with how many
programs can most efficiently do the required processing do not exist, here are
some suggestions:
v As you look at each programming task, examine the data and processing that

each task involves. If a task requires different types of processing and has
different time limitations (for example, daily as opposed to different times
throughout the month), that task might be more efficiently performed by several
programs.

v As you define each program, it is a good idea for maintenance and recovery
reasons to keep it as simple as possible. The simpler a program is—the less it
does—the easier it is to maintain, and to restart after a program or system
failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available. The more limited the access requested,
the more likely the data is to be available.
Similarly, if the data that the application requires is physically in one place, it
might be more efficient to have one program do more of the processing than
usual. These are considerations that depend upon the processing and the data of
each application.

v Documenting each of the user tasks is helpful during the design process, and in
the future when others will work with your application. Be sure you are aware
of standards in this area. The kind of information that is typically kept is when
the action is to be executed, a functional description, and requirements for
maintenance, security, and recovery.
Example: For the current roster process described in “Listing Data Elements” on
page 12, you might record the information shown in Figure 15. How frequently
the program is run is determined by the number of classes (20) needed by the
Education Center each week.

Accessing Databases With Your IMS Application Program
When designing your program, consider the type of database it must access. The
type of database depends on the operating environment. The program types you
can run and the different types of databases you can access in a DB batch, TM
batch, DB/DC, DBCTL, or DCCTL environment are shown in Table 12 on page 31.

USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE:Included in Education DB maintenance.

SECURITY: None.

RECOVERY:After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Figure 15. Documenting User Task Descriptions: Current Roster Example

Deciding Your IMS Application’s Requirements

30 Application Programming: Design Guide



Table 12. Program and Database Options in IMS Environments

Environment
Type of Program You
Can Run Type of Database That Can Be Accessed

DB/DC BMP DB2 UDB for z/OS
DEDB and MSDB
Full function
z/OS files

IFP DB2 UDB for z/OS

DEDB

Full function

JBP DB2 UDB for z/OS

DEDB

Full function

JMP DB2 UDB for z/OS

DEDB

Full function

MPP DB2 UDB for z/OS

DEDB and MSDB

Full function

DB Batch DB Batch DB2 UDB for z/OS

Full function

GSAM

z/OS files

DBCTL BMP (Batch-oriented) DB2 UDB for z/OS

DEDB

Full function

GSAM

z/OS files

JBP DB2 UDB for z/OS

DEDB

Full function

DCCTL BMP DB2 UDB for z/OS

GSAM

IFP DB2 UDB for z/OS

JMP DB2 UDB for z/OS

MPP DB2 UDB for z/OS

TM Batch TM Batch DB2 UDB for z/OS

GSAM

z/OS files

The types of databases that can be accessed are:
v IMS Databases

There are two types of IMS databases: full-function and Fast Path.
– Full-function databases

Accessing Databases With Your IMS Application Program

Chapter 3. Analyzing IMS Application Processing Requirements 31

||

|
|
||

|||
|
|
|

||

|

|

||

|

|

||

|

|

||

|

|

|||

|

|

|

|||

|

|

|

|

||

|

|

|||

|

||

||

||

|||

|

|
|



Full-function databases are hierarchic databases that are accessed through
Data Language I (DL/I) call interface and can be processed by these types of
application programs: IFP, JMP, JBP, MPP, BMP, and DB batch. DL/I calls
make it possible for IMS application programs to retrieve, replace, delete, and
add segments to full-function databases.
JMP and JBP applications use JDBC to access full-function databases in
addition to DL/I.
If you use data sharing, online programs and batch programs can access the
same full-function database concurrently.
Full-function database types include: HDAM, HIDAM, HSAM, HISAM,
PHDAM, PHIDAM, SHSAM, and SHISAM.

– Fast Path databases

Fast Path databases are of two types: MSDBs and DEDBs.
- Main storage databases (MSDBs) are root-segment-only databases that

reside in virtual storage during execution.
- Data entry databases (DEDBs) are hierarchic databases that provide a high

level of availability for, and efficient access to, large volumes of detailed
data.

MPP, BMP, and IFP programs can access Fast Path databases. In the DBCTL
environment, BMP programs can access DEDBs but not MSDBs. JMP and JBP
programs can access DEDBs but not MSDBs.

v DB2 UDB for z/OS databases

DB2 UDB for z/OS databases are relational databases that can be processed by
IMS batch, BMP, IFP, JBP, JMP, and MPP programs. An IMS application program
might access only DL/I databases, both DL/I and DB2 UDB for z/OS databases,
or only DB2 UDB for z/OS databases. Relational databases are represented to
application programs and users as tables, and are processed using a relational
data language called Structured Query Language (SQL).

Note: JMP and JBP programs cannot access DB2 UDB for z/OS databases.
Related Reading: For information on processing DB2 UDB for z/OS databases,
see DB2 UDB for z/OS and OS/390 Application Programming and SQL Guide.

v z/OS Files

BMPs (in both the DB/DC and DBCTL environment) are the only type of online
application program that can access z/OS files for their input or output. Batch
programs can also access z/OS files.

v GSAM Databases (Generalized Sequential Access Method)
Generalized Sequential Access Method (GSAM) is an access method that makes
it possible for BMPs and batch programs to access a sequential z/OS data set as
a simple database. A GSAM database can be accessed by z/OS or by IMS.

Accessing Data: The Types of Programs You Can Write for Your IMS
Application

You must decide what type of program to use: batch programs, message
processing programs (MPPs), IMS Fast Path (IFP) applications, batch message
processing (BMP) applications, Java Message Processing (JMP) applications, or Java
Batch Processing (JBP) applications. As Table 12 on page 31 shows, the types of
programs you can use depend on whether you are running in the batch, DB/DC,
or DBCTL environment.

Accessing Databases With Your IMS Application Program

32 Application Programming: Design Guide

|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|



These topics explain the types of databases that the programs access, when the
programs are used, and how to recover the programs.

DB Batch Processing
These topics describe DB batch processing and can help you decide if this batch
program is appropriate for your application.

Data That a DB Batch Program Can Access
A DB batch program can access full-function databases, DB2 UDB for z/OS
databases, GSAM databases, and z/OS files. A DB batch program cannot access
DEDBs or MSDBs.

Using DB Batch Processing
Batch programs are typically longer-running programs than online programs. You
use a batch program when you have a large number of database updates to do or
a report to print. Because a batch program runs by itself—it does not compete with
any other programs for resources like databases—it can run independently of the
control region. If you use data sharing, DB batch programs and online programs
can access full-function databases concurrently. Batch programs:
v Typically produce a large amount of output, such as reports.
v Are not executed by another program or user. They are usually scheduled at

specific time intervals (for example, weekly) and are started with JCL.
v Produce output that is not needed right away. The turnaround time for batch

output is not crucial, as it usually is for online programs.

Recovering a DB Batch Program
Include checkpoints in your batch program to restart it in case of failure.

Issuing Checkpoints: Issue checkpoints in a batch program to commit database
changes and provide places from which to restart your program. Issuing
checkpoints in a batch program is important, because commit points do not occur
automatically, as they do in MPPs, transaction-oriented BMPs, and IFPs.

Issuing checkpoints is particularly important in a batch program that participates
in data sharing with your online system. Checkpoints free up resources for use by
online programs. You should initially include checkpoints in all batch programs
that you write. Even though the checkpoint support might not be needed then, it is
easier to incorporate checkpoints initially than to try to fit them in later. And it is
possible that you might want to convert your batch program to a BMP or
participate in data sharing. For more information on issuing checkpoints, see
“Checkpoints in Batch Programs” on page 46.

To issue checkpoints (or other system service calls), you must specify an I/O PCB
for your program. To obtain an I/O PCB, use the compatibility option by
specifying CMPAT=YES in the PSBGEN statement in your program's PSB.

Related Reading: For more information on obtaining an I/O PCB, see IMS Version
9: Application Programming: Database Manager.

Recommendation: For PSBs used by DB batch programs, always specify
CMPAT=YES.

Accessing Data: Programs You Can Write

Chapter 3. Analyzing IMS Application Processing Requirements 33



Backing out Database Changes: The type of storage medium for the system log
determines what happens when a DB batch program terminates abnormally. You
can specify that the system log be stored on either DASD (direct access storage
device) or tape.

System Log on DASD: If the system log is stored on DASD, using the BKO
execution parameter you can specify that IMS is to dynamically back out the
changes that the program has made to the database since its last commit point.

Related Reading: For information on using the BKO execution parameter, see IMS
Version 9: Installation Volume 2: System Definition and Tailoring.

Dynamically backing out database changes has the following advantages:
v Data accessed by the program that failed is available to other programs

immediately. If batch backout is used, other programs cannot access the data
until the IMS Batch Backout utility has been run to back out the database
changes.

v If data sharing is being used and two programs are deadlocked, one of the
programs can continue processing. Otherwise, if batch backout is used, both
programs fail.

IMS performs dynamic backout for a batch program when an IMS-detected failure
occurs, for example, when a deadlock is detected. Logging to DASD makes it
possible for batch programs to issue the SETS, ROLB, and ROLS system service calls.
These calls cause IMS to dynamically back out changes that the program has made.

Related Reading: For information on the SETS, ROLB, and ROLS calls, see the
information about recovering databases and maintaining database integrity in
either of the following books:
v IMS Version 9: Application Programming: Database Manager

v IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS

System Log on Tape: If a batch application program terminates abnormally and the
batch system log is stored on tape, you must use the IMS Batch Backout utility to
back out the program's changes to the database.

TM Batch Processing
A TM batch program acts like a DB batch program with the following differences:
v It cannot access full-function databases, but it can access DB2 UDB for z/OS

databases, GSAM databases, and z/OS files.
v To issue checkpoints for recovery, you need not specify CMPAT=YES in your

program's PSB. (The CMPAT parameter is ignored in TM batch.) The I/O PCB is
always the first PCB in the list.

v You cannot dynamically back out a database because IMS does not own the
databases.

Processing Messages: MPPs
These topics describe the message processing program (MPP) and can help you
decide if this online program is appropriate for your application.

Accessing Data: Programs You Can Write

34 Application Programming: Design Guide



Data That an MPP Can Access
An MPP is an online program that can access full-function databases, DEDBs,
MSDBs, and DB2 UDB for z/OS databases. Unlike BMPs and batch programs,
MPPs cannot access GSAM databases. MPPs can only run in DB/DC and DCCTL
environments.

Using an MPP
The primary purpose of an MPP is to process requests from users at terminals and
from other application programs. Ideally, MPPs are very small, and the processing
they perform is tailored to respond to requests quickly. They process messages as
their input, and send messages as responses.

Definition: A message is data that is transmitted between any two terminals,
application programs, or IMS systems. Each message has one or more segments.

MPPs are executed through transaction codes. When you define an MPP, you
associate it with one or more transaction codes. Each transaction code represents a
transaction the MPP is to process. To process a transaction, a user at a terminal
enters a code for that transaction. IMS then schedules the MPP associated with that
code, and the MPP processes the transaction. The MPP might need to access the
database to do this. Generally, an MPP goes through these five steps to process a
transaction:
1. Retrieve a message from IMS.
2. Process the message and access the database as necessary.
3. Respond to the message.
4. Repeat the process until no messages are forthcoming.
5. Terminate.

When an MPP is defined, a system administrator makes decisions about the
program's scheduling and processing. For each MPP, a system administrator
specifies:
v The transaction's priority
v The number of messages for a particular transaction code that the MPP can

process in a single scheduling
v The amount of time (in seconds) in which the MPP is allowed to process a single

transaction

Defining priorities and processing limits gives system administration some control
over load balancing and processing.

Although the primary purpose of an MPP is to process and reply to messages
quickly, it is flexible in how it processes a transaction and where it can send output
messages. For example, an MPP can send output messages to other terminals and
application programs. See Chapter 5, “Gathering Requirements for Database
Options,” on page 69 for a description of some of the options available to MPPs.

Processing Messages: IFPs
These topics describe IMS Fast Path (IFP) programs and can help you decide if this
online program is appropriate for your application.

Data That an IFP Can Access
An IFP is similar to an MPP: Its main purpose is to quickly process and reply to
messages from terminals.

Accessing Data: Programs You Can Write

Chapter 3. Analyzing IMS Application Processing Requirements 35



Like an MPP, an IFP can access full-function databases, DEDBs, MSDBs, and DB2
UDB for z/OS databases. IFPs can only be run in DB/DC and DCCTL
environments.

Using an IFP
You should use an IFP if you need quick processing and can accept the
characteristics and constraints associated with IFPs.

The main differences between IFPs and MPPs are as follows:
v Messages processed by IFPs must consist of only one segment. Messages that are

processed by MPPs can consist of several segments.
v IFPs bypass IMS queuing, allowing for more efficient processing. Transactions

that are processed by Fast Path's EMH (expedited message handler) are on a
first-in, first-out basis.

IFPs also have the following characteristics:
v They run in transaction response mode. This means that they must respond to

the terminal that sent the message before the terminal can enter any more
requests.

v They process only wait-for-input transactions. When you define a program as
processing wait-for-input transactions, the program remains in virtual storage,
even when no additional messages are available for it to process.

Restrictions:

v An IMS program cannot send messages to an IFP transaction unless it is in
another IMS system that is connected using Intersystem Communication (ISC).

v MPPs cannot pass conversations to an IFP transaction.

Recovering an IFP
IFPs must be defined as single mode. This means that a commit point occurs each
time the program retrieves a message. Because of this, you do not need to issue
checkpoint calls.

Batch Message Processing: BMPs
BMPs are application programs that can perform batch-type processing online and
access the IMS message queues for their input and output. Because of this and
because of the data available to them, BMPs are the most flexible of the IMS
application programs.

The two types of BMPs are: batch-oriented and transaction-oriented.

Batch Processing Online: Batch-Oriented BMPs
These topics describe the batch message processing program and can help you
decide if this batch program is appropriate for your application.

Data a Batch-Oriented BMP Can Access: A batch-oriented BMP performs
batch-type processing in any online environment. When run in the DB/DC or
DCCTL environment, a batch-oriented BMP can send its output to the IMS
message queue to be processed later by another application program. Unlike a
transaction-oriented BMP, a batch-oriented BMP cannot access the IMS message
queue for input.

In the DBCTL environment, a batch-oriented BMP can access full-function
databases, DB2 UDB for z/OS databases, DEDBs, z/OS files, and GSAM databases.

Accessing Data: Programs You Can Write

36 Application Programming: Design Guide



In the DB/DC environment, a batch-oriented BMP can access all of these types of
databases, as well as Fast Path MSDBs. In the DCCTL environment, this program
can access DB2 UDB for z/OS databases, z/OS files, and GSAM databases.

Using a Batch-Oriented BMP: A batch-oriented BMP can be simply a batch
program that runs online. (Online requests are processed by the IMS DB/DC,
DBCTL, or DCCTL system rather than by a batch system.) You can even run the
same program as a BMP or as a batch program.

Recommendation: If the program performs a large number of database updates
without issuing checkpoints, consider running it as a batch program so that it does
not degrade the performance of the online system.

To use batch-oriented BMPs most efficiently, avoid a large amount of batch-type
processing online. If you have a BMP that performs time-consuming processing
such as report writing and database scanning, schedule it during non-peak hours
of processing. This will prevent it from degrading the response time of MPPs.

Because BMPs can degrade response times, your response time requirements
should be the main consideration in deciding the extent to which you will use
batch message processing. Therefore, use BMPs accordingly.

Recovering a Batch-Oriented BMP: Issuing checkpoint calls is an important part
of batch-oriented BMP processing, because commit points do not occur
automatically, as they do in MPPs, transaction-oriented BMPs, and IFPs. Unlike
most batch programs, a BMP shares resources with MPPs. In addition to
committing database changes and providing places from which to restart (as for a
batch program), checkpoints release resources that are locked for the program. For
more information on issuing checkpoints, see “Checkpoints in Batch-Oriented
BMPs” on page 45.

If a batch-oriented BMP fails, IMS and DB2 UDB for z/OS back out the database
updates the program has made since the last commit point. You then restart the
program with JCL. If the BMP processes z/OS files, you must provide your own
method of taking checkpoints and restarting.

Converting a Batch Program to a Batch-Oriented BMP: If you have IMS TM or
are running in the DBCTL environment, you can convert a batch program to a
batch-oriented BMP.
v If you have IMS TM, you might want to convert your programs for these

reasons:
– BMPs can send output to the message queues.
– BMPs can access DEDBs and MSDBs.
– BMPs simplify program recovery because logging goes to a single system log.

If you use DASD for the system log in batch, you can specify that you want
dynamic backout for the program. In that case, batch recovery is similar to
BMP recovery, except, of course, with batch you need to manage multiple
logs.

– Restart can be done automatically from the last checkpoint without changing
the JCL.

v If you are using DBCTL, you might want to convert your programs for these
reasons:
– BMPs can access DEDBs.

Accessing Data: Programs You Can Write

Chapter 3. Analyzing IMS Application Processing Requirements 37



– BMPs simplify program recovery because logging goes to a single system log.
If you use DASD for the system log in batch, you can specify that you want
dynamic backout for the program. In that case, batch recovery is similar to
BMP recovery, except, of course, with batch you need to manage multiple
logs.

v If you are running sysplex data sharing and you either have IMS TM or are
using DBCTL, you might want to convert your program. This is because using
batch-oriented BMPs helps you stay within the sysplex data-sharing limit of 32
connections for each OSAM or VSAM structure.
If you use data sharing, you can run batch programs concurrently with online
programs. If you do not use data sharing, converting a batch program to a BMP
makes it possible to run the program with BMPs and other online programs.
Also, if you plan to run your batch programs offline, converting them to BMPs
enables you to run them with the online system, instead of waiting until the
online system is not running. Running a batch program as a BMP can also keep
the data more current.

v If you have IMS TM or are using DBCTL, you can have a program that runs as
either a batch program or a BMP.
Recommendation: Code your checkpoints in a way that makes them easy to
modify. Converting a batch program to a BMP or converting a batch program to
use data sharing requires more frequent checkpoints. Also, if a program fails
while running in a batch region, you must restart it in a batch region. If a
program fails in a BMP region, you must restart it in a BMP region.

The requirements for converting a batch program to a BMP are:
v The program must have an I/O PCB. You can obtain an I/O PCB in batch by

specifying the compatibility (CMPAT) option in the program specification block
(PSB) for the program.
Related Reading: For more information on the CMPAT option in the PSB, see
IMS Version 9: Utilities Reference: System.

v BMPs must issue checkpoint calls more frequently than batch programs.

See“Batch Processing Online: Batch-Oriented BMPs” on page 36

Batch Message Processing: Transaction-Oriented BMPs
These topics describe a transaction-oriented BMP and can help you decide if this
batch program is appropriate for your application.

Data a Transaction-Oriented BMP Can Access: Transaction-oriented BMPs can
access z/OS files, GSAM databases, DB2 UDB for z/OS databases, full-function
databases, DEDBs, and MSDBs.

Unlike a batch-oriented BMP, a transaction-oriented BMP can access the IMS
message queue for input and output, and it can only run in the DB/DC and
DCCTL environments.

Using a Transaction-Oriented BMP: Unlike MPPs, transaction-oriented BMPs are
not scheduled by IMS. You schedule them as needed and start them with JCL. For
example, an MPP, as it processes each message, might send an output message
giving details of the transaction to the message queue. A transaction-oriented BMP
could then access the message queue to produce a daily activity report.

Typically, you use a transaction-oriented BMP to simulate direct update online:
Instead of updating the database while processing its transactions, an MPP sends
its updates to the message queue. A transaction-oriented BMP then performs the

Accessing Data: Programs You Can Write

38 Application Programming: Design Guide



updates for the MPP. You can run the BMP as needed, depending on the number
of updates. This improves response time for the MPP, and it keeps the data
current. This can be more efficient than having the MPP process its transactions if
the response time of the MPP is very important. One disadvantage in doing this,
however, is that it splits the transaction into two parts which is not necessary.

If you have a BMP perform an update for an MPP, design the BMP so that, if the
BMP terminates abnormally, you can reenter the last message as input for the BMP
when you restart it. For example, suppose an MPP gathers database updates for
three BMPs to process, and one of the BMPs terminates abnormally. You would
need to reenter the message that the terminating BMP was processing to one of the
other BMPs for reprocessing.

BMPs can process transactions defined as wait-for-input (WFI). This means that
IMS allows the BMP to remain in virtual storage after it has processed the
available input messages. IMS returns a QC status code, indicating that the
program should terminate when one of the following occurs:
v The program reaches its time limit.
v The master terminal operator enters a command to stop processing.
v IMS is terminated with a checkpoint shutdown.

You specify WFI for a transaction on the WFI parameter of the TRANSACT macro
during IMS system definition.

A batch message processing region (BMP) scheduled against WFI transactions
returns a QC status code (no more messages) only for the following commands:
/PSTOP REGION, /DBD, /DBR, or /STA.

Like MPPs, BMPs can send output messages to several destinations, including
other application programs. See “Identifying Output Message Destinations” on
page 101 for more information.

Recovering a Transaction-Oriented BMP: Like MPPs, with transaction-oriented
BMPs, you can choose where commit points occur in the program. You can specify
that a transaction-oriented BMP be single or multiple mode, just as you can with
an MPP. If the BMP is single mode, issuing checkpoint calls is not as critical as in a
multiple mode BMP. In a single mode BMP, a commit point occurs each time the
program retrieves a message. For more information on issuing checkpoints in a
BMP, see “Checkpoints in MPPs and Transaction-Oriented BMPs” on page 44.

Java Message Processing: JMPs
A JMP application program is similar to an MPP application program, except that
JMP applications must be written in Java or object-oriented COBOL. Like an MPP
application, a JMP application is started when there is a message in the message
queue for the JMP application and IMS schedules the message for processing.

JMP applications can access IMS data or DB2 UDB for z/OS data using JDBC. JMP
applications run in JMP regions which have JVMs (Java Virtual Machines). For
more information about JMPs, see the IMS Version 9: IMS Java Guide and Reference.

Java Batch Processing: JBPs
A JBP application program is similar to a non-message-driven BMP application
program, except that JBP applications must be written in Java or object-oriented
COBOL.

Accessing Data: Programs You Can Write

Chapter 3. Analyzing IMS Application Processing Requirements 39

|

|
|
|
|

|
|
|

|

|
|
|



JBP applications can access IMS data or DB2 UDB for z/OS data using JDBC. JBP
applications run in JBP regions which have JVMs. For more information about
JBPs, see the IMS Version 9: IMS Java Guide and Reference.

IMS Programming Integrity and Recovery Considerations
This section explains how IMS protects data integrity, and how you can plan ahead
for program recovery. These topics assume some knowledge of IMS application
programming. You might want to read this section after reading the IMS
application programming book that is applicable for your environment.

How IMS Protects Data Integrity: Commit Points
When an online program accesses the database, it is not necessarily the only
program doing so. IMS and DB2 UDB for z/OS make it possible for more than one
application program to access the data concurrently without endangering the
integrity of the data.

To access data concurrently while protecting data integrity, IMS and DB2 UDB for
z/OS prevent other application programs from accessing segments that your
program deletes, replaces, or inserts, until your program reaches a commit point. A
commit point is the place in the program's processing at which it completes a unit
of work. When a unit of work is completed, IMS and DB2 UDB for z/OS commit
the changes that your program made to the database. Those changes are now
permanent and the changed data is now available to other application programs.

What Happens at a Commit Point
When an application program finishes processing one distinct unit of work, IMS
and DB2 UDB for z/OS consider that processing to be valid, even if the program
later encounters problems. For example, an application program that is retrieving,
processing, and responding to a message from a terminal constitutes a unit of work.
If the program encounters problems while processing the next input message, the
processing it has done on the first input message is not affected. These input
messages are separate pieces of processing.

A commit point indicates to IMS that a program has finished a unit of work, and
that the processing it has done is accurate. At that time:
v IMS releases segments it has locked for the program since the last commit point.

Those segments are then available to other application programs.
v IMS and DB2 UDB for z/OS make the program's changes to the database

permanent.
v The current position in all databases except GSAM is reset to the start of the

database.

If the program terminates abnormally before reaching the commit point:
v IMS and DB2 UDB for z/OS back out all of the changes the program has made

to the database since the last commit point. (This does not apply to batch
programs that write their log to tape.)

v IMS discards any output messages that the program has produced since the last
commit point.
Until the program reaches a commit point, IMS holds the program's output
messages so that, if the program terminates abnormally, users at terminals and
other application programs do not receive inaccurate information from the
abnormally terminating application program.

Accessing Data: Programs You Can Write

40 Application Programming: Design Guide

|
|
|

|
|
|
|
|
|
|



If the program is processing an input message and terminates abnormally, the
input message is not discarded if both of the following conditions exist:
1. You are not using the Non-Discardable Messages (NDM) exit routine.
2. IMS terminates the program with one of the following abend codes: U0777,

U2478, U2479, U3303. The input message is saved and processed later.
Exception: The input message is discarded if it is not terminated by one of
the abend codes previously referenced. When the program is restarted, IMS
gives the program the next message.

If the program is processing an input message when it terminates abnormally,
and you use the NDM exit routine, the input message might be discarded from
the system regardless of the abend. Whether the input message is discarded
from the system depends on how you have written the NDM exit routine.
Related Reading: For more information about the NDM exit routine, see IMS
Version 9: Customization Guide.

v IMS notifies the MTO that the program terminated abnormally.
v IMS and DB2 UDB for z/OS release any locks that the program has held on data

it has updated since the last commit point. This makes the data available to
other application programs and users.

Where Commit Points Occur
A commit point can occur in a program for any of the following reasons:
v The program terminates normally. Except for a program that accesses Fast Path

resources, normal program termination is always a commit point. A program
that accesses Fast Path resources must reach a commit point before terminating.

v The program issues a checkpoint call. Checkpoint calls are a program's means of
explicitly indicating to IMS that it has reached a commit point in its processing.

v If a program processes messages as its input, a commit point might occur when
the program retrieves a new message. IMS considers this commit point the start
of a new unit of work in the program. Retrieving a new message is not always a
commit point. This depends on whether the program has been defined as single
mode or multiple mode.
– If you specify single mode, a commit point occurs each time the program

issues a call to retrieve a new message. Specifying single mode can simplify
recovery, because you can restart the program from the most recent call for a
new message if the program terminates abnormally. When IMS restarts the
program, the program begins by processing the next message.

– If you specify multiple mode, a commit point occurs when the program issues
a checkpoint call or when it terminates normally. At those times, IMS sends
the program's output messages to their destinations. Because multiple-mode
programs contain fewer commit points than do single mode programs,
multiple mode programs might offer slightly better performance than
single-mode programs. When a multiple mode program terminates
abnormally, IMS can only restart it from a checkpoint. Instead of reprocessing
only the most recent message, a program might have several messages to
reprocess, depending on when the program issued the last checkpoint call.

Table 13 on page 42 lists the modes in which the programs can run. Because
processing mode is not applicable to batch programs and batch-oriented BMPs,
they are not listed in the table. The program type is listed, and the table indicates
which mode is supported.

Integrity and Recovery Considerations

Chapter 3. Analyzing IMS Application Processing Requirements 41



Table 13. Processing Modes

Program Type
Single Mode
Only

Multiple Mode
Only Either Mode

MPP X

IFP X

Transaction-Oriented BMP X

You specify single or multiple mode on the MODE parameter of the TRANSACT
macro.

Related Reading: For information on the TRANSACT macro, see IMS Version 9:
Installation Volume 2: System Definition and Tailoring.

See Figure 16 for an illustration of the difference between single-mode and
multiple-mode programs. A single-mode program gets and processes messages,
sends output, looks for more messages, and terminates if there are no more. A
multiple-mode program gets and processes messages, sends output, but has a
checkpoint before looking for more messages and terminating. For a single-mode
program, the commit points are when the message is obtained and the program
terminates. For multiple-mode, the commit point is at the checkpoint and when the
program terminates.

DB2 UDB for z/OS does some processing with multiple- and single-mode
programs that IMS does not. When a multiple-mode program issues a call to
retrieve a new message, DB2 UDB for z/OS performs an authorization check. If the
authorization check is successful, DB2 UDB for z/OS closes any SQL cursors that
are open. This affects the design of your program.

Related Reading: For more information on this topic, see IMS Version 9: Application
Programming: Transaction Manager.

The DB2 UDB for z/OS SQL COMMIT statement causes DB2 UDB for z/OS to make
permanent changes to the database. However, this statement is valid only in TSO
application programs. If an IMS application program issues this statement, it
receives a negative SQL return code.

Figure 16. Single Mode and Multiple Mode

Integrity and Recovery Considerations

42 Application Programming: Design Guide



Planning for Program Recovery: Checkpoint and Restart
Recovery in an IMS application program that accesses DB2 UDB for z/OS data is
handled by both IMS and DB2 UDB for z/OS. IMS coordinates the process, and
DB2 UDB for z/OS handles recovery of DB2 UDB for z/OS data.

Introducing Checkpoint Calls
Checkpoint calls indicate to IMS that the program has reached a commit point.
They also establish places in the program from which the program can be
restarted. IMS has symbolic checkpoint calls and basic checkpoint calls.

A program might issue only one type of checkpoint call.
v MPPs and IFPs must use basic checkpoint calls.
v BMP, JMP, and batch programs can use either symbolic checkpoint calls or basic

checkpoint calls.

Programs that issue symbolic checkpoint calls can specify as many as seven data
areas in the program to be checkpointed. When IMS restarts the program, the
Restart call restores these areas to the condition they were in when the program
issued the symbolic checkpoint call. Because symbolic checkpoint calls do not
support z/OS files, if your program accesses z/OS files, you must supply your
own method of establishing checkpoints.

You can use symbolic checkpoint for either Normal Start or Extended Restart
(XRST).

Example: Typical calls for a Normal start would be as follows:
v XRST (I/O area is blank)
v CHKP (I/O area has checkpoint ID)
v Database Calls (including checkpoints)
v CHKP (final checkpoint)

Example: Typical calls for an Extended Restart (XRST) would be as follows:
v XRST (I/O area has checkpoint ID)
v CHKP (I/O area has new checkpoint ID)
v Database Calls (including checkpoints)
v CHKP (final checkpoint)

Related Reading: For more information on checkpoint calls, see IMS Version 9:
Application Programming: Database Manager and IMS Version 9: IMS Java Guide and
Reference.

The restart call, which you must use with symbolic checkpoint calls, provides a
way of restarting a program after an abnormal termination. It restores the
program's data areas to the way they were when the program issued the symbolic
checkpoint call. It also restarts the program from the last checkpoint the program
established before terminating abnormally.

All programs can use basic checkpoint calls. Because you cannot use the restart call
with the basic checkpoint call, you must provide program restart. Basic checkpoint
calls do not support either z/OS or GSAM files. IMS programs cannot use z/OS
checkpoint and restart. If you access z/OS files, you must supply your own
method of establishing checkpoints and restarting.

Integrity and Recovery Considerations

Chapter 3. Analyzing IMS Application Processing Requirements 43

|
|



In addition to the actions that occur at a commit point, issuing a checkpoint call
causes IMS to:
v Inform DB2 UDB for z/OS that the changes your program has made to the

database can be made permanent. DB2 UDB for z/OS makes the changes to DB2
UDB for z/OS data permanent, and IMS makes the changes to IMS data
permanent.

v Write a log record containing the checkpoint identification given in the call to
the system log, but only if the PSB contains a DB PCB. You can print checkpoint
log records by using the IMS File Select and Formatting Print program
(DFSERA10). With this utility, you can select and print log records based on
their type, the data they contain, or their sequential positions in the data set.
Checkpoint records are X'18' log records.
Related Reading: For more information about the DFSERA10 program, see IMS
Version 9: Utilities Reference: System.

v Send a message containing the checkpoint identification that was given in the
call to the system console operator and to the IMS master terminal operator.

v Return the next input message to the program's I/O area, if the program
processes input messages. In MPPs and transaction-oriented BMPs, a checkpoint
call acts like a call for a new message.

Restriction: Do not specify CHKPT=EOV on any DD statement in order to take an
IMS checkpoint because of unpredictable results.

When to Use Checkpoint Calls
Issuing Checkpoint calls is most important in programs that do not have built-in
commit points. The decision about whether your program should issue
checkpoints, and if so, how often, depends on your program. Generally, these
programs should issue checkpoint calls:
v Multiple-mode programs
v Batch-oriented BMPs (which can issue either SYNC or CHKP calls)
v Most batch programs
v Programs that run in a data sharing environment
v JMP applications

You do not need to issue checkpoint calls in:
v Single-mode BMP or MPP programs
v Database load programs
v Programs that access the database in read-only mode, as defined with the

PROCOPT=GO option (during a PSBGEN), and are short enough to restart from
the beginning

v Programs that have exclusive use of the database

Checkpoints in MPPs and Transaction-Oriented BMPs: The mode type of the
program is specified on the MODE keyword of the TRANSACT macro during IMS
system generation. The modes are single and multiple.
v In single-mode programs

In single mode programs (MODE=SNGL was specified on the TRANSACT
macro during IMS system definition), a Get Unique to the message queue causes
an implicit commit to be performed.

v In multiple-mode programs

In multiple-mode BMPs and MPPs, the only commit points are those that result
from the checkpoint calls that the program issues and from normal program

Integrity and Recovery Considerations

44 Application Programming: Design Guide

|



termination. If the program terminates abnormally and it has not issued
checkpoint calls, IMS backs out the program's database updates and cancels the
messages it created since the beginning of the program. If the program has
issued checkpoint calls, IMS backs out the program's changes and cancels the
output messages it has created since the most recent checkpoint.
Consider the following when issuing checkpoint calls in multiple-mode
programs:
– How long it would take to back out and recover that unit of processing. The

program should issue checkpoints frequently enough to make the program
easy to back out and recover.

– How you want the output messages grouped. checkpoint calls establish how
a multiple-mode program's output messages are grouped. Programs should
issue checkpoint calls frequently enough to avoid building up too many
output messages.

Depending on the database organization, issuing a checkpoint call might reset
your position in the database.
Related Reading: For more information about losing your position when a
checkpoint is issued, see IMS Version 9: Application Programming: Database
Manager.

Checkpoints in Batch-Oriented BMPs: Issuing checkpoint calls in a
batch-oriented BMP is important for several reasons:
v In addition to committing changes to the database and establishing places from

which the program can be restarted, checkpoint calls release resources that IMS
has locked for the program.

v A batch-oriented BMP that uses DEDBs or MSDBs might terminate with abend
U1008 if a SYNC or CHKP call is not issued before the application program
terminates.

v If a batch-oriented BMP does not issue checkpoints frequently enough, it can be
abnormally terminated, or it can cause another application program to be
abnormally terminated by IMS for any of these reasons:
– If a BMP retrieves and updates many database records between checkpoint

calls, it can tie up large portions of the databases and cause long waits for
other programs needing those segments.
Exception: For a BMP with a processing option of GO or exclusive, IMS does
not lock segments for programs. Issuing checkpoint calls releases the
segments that the BMP has locked and makes them available to other
programs.

– The space needed to maintain lock information about the segments that the
program has read and updated exceeds what has been defined for the IMS
system. If a BMP locks too many segments, the amount of storage needed for
the locked segments can exceed the amount of available storage. If this
happens, IMS terminates the program abnormally. You must increase the
program's checkpoint frequency before rerunning the program. The available
storage is specified during IMS system definition.
Related Reading: For more information on specifying storage, see IMS Version
9: Installation Volume 2: System Definition and Tailoring.
You can limit the number of locks for the BMP by using the LOCKMAX=n
parameter on the PSBGEN statement. For example, a specification of
LOCKMAX=5 means the application cannot obtain more than 5000 locks at
any time. The value of n must be between 0 and 255. When a maximum lock
limit does not exist, 0 is the default. If the BMP tries to acquire more than the
specified number of locks, IMS terminates the application with abend U3301.

Integrity and Recovery Considerations

Chapter 3. Analyzing IMS Application Processing Requirements 45



Related Reading: For more information about this abend, see IMS Version 9:
Messages and Codes, Volume 1.

Checkpoints in Batch Programs: Batch programs that update databases should
issue checkpoint calls. The main consideration in deciding how often to take
checkpoints in a batch program is the time required to back out and reprocess the
program after a failure. A general recommendation is to issue one checkpoint call
every 10 or 15 minutes.

If you might need to back out the entire batch program, the program should issue
the checkpoint call at the beginning of the program. IMS backs out the program to
the checkpoint you specify, or to the most recent checkpoint if you do not specify a
checkpoint. If the database is updated after the beginning of the program and
before the first checkpoint, IMS is not able to back out these database updates.

For a batch program to issue checkpoint calls, it must specify the compatibility
option in its PSB (CMPAT=YES). This generates an I/O PCB for the program,
which IMS uses as an I/O PCB in the checkpoint call.

Another important reason for issuing checkpoint calls in batch programs is that,
although they may currently run in an IMS batch region, they might later need to
access online databases. This would require converting them to BMPs. Issuing
checkpoint calls in a BMP is important for reasons other than recovery—for
example, to release database resources for other programs. So, you should initially
include checkpoints in all batch programs that you write. Although the checkpoint
support might not be needed then, it is easier to incorporate checkpoint calls
initially than to try to fit them in later.

To free database resources for other programs, batch programs that run in a
data-sharing environment should issue checkpoint calls more frequently than those
that do not run in a data-sharing environment.

Specifying Checkpoint Frequency
You should specify checkpoint frequency in your program so that you can easily
modify it when the frequency needs to be adjusted. You can do this by:
v Using a counter in your program to keep track of elapsed time, and issuing a

checkpoint call after a certain time interval.
v Using a counter to keep track of the number of root segments your program

accesses, and issuing a checkpoint call after a certain number of root segments.
v Using a counter to keep track of the number of updates your program performs,

and issuing a checkpoint call after a certain number of updates.

Data Availability Considerations
Your program might be unable to access data in a full-function database. This
section describes the conditions for an unavailable database and the program calls
that allow your program to manage data under these conditions.

Dealing with Unavailable Data
The conditions that make the database totally unavailable for both read and update
are:
v The /LOCK command for a database was issued.
v The /STOP command for a database was issued.
v The /DBRECOVERY command was issued.
v Authorization for a database failed.

Integrity and Recovery Considerations

46 Application Programming: Design Guide

|
|
|
|
|



The conditions that make the database available only for read and not for update
are:
v The /DBDUMP command has been issued.
v Database ACCESS value is RD (read).

In addition to unavailability of an entire database, other situations involving
unavailability of a limited amount of data can also inhibit program access. One
such example would be a failure situation involving data sharing. The active IMS
system knows which locks were held by a sharing IMS system at the time the
sharing IMS system failed. Although the active IMS system continues to use the
database, it must reject access to the data which the failed IMS system locked upon
failure. This situation occurs for both full-function and DEDB databases.

The two situations where the program might encounter unavailable data are:
v The program makes a call requiring access to a database that was unavailable at

the time the program was scheduled.
v The database was available when the program was scheduled, but limited

amounts of data are unavailable. The current call has attempted to access the
unavailable data.

Regardless of the condition causing the data to be unavailable, the program has
two possible approaches when dealing with unavailable data. The program can be
insensitive or sensitive to data unavailability.
v When the program is insensitive, IMS takes appropriate action when the

program attempts to access unavailable data.
v When the program is sensitive, IMS informs the program that the data it is

attempting to access is not available.

If the program is insensitive to data unavailability, and attempts to access
unavailable data, IMS aborts the program (3303 pseudo-abend), and backs out any
updates the program has made. The input message that the program was
processing is suspended, and the program is scheduled to process the input
message when the data becomes available. However, if the database is unavailable
because dynamic allocation failed, a call results in an AI (unable to open) status
code.

If the program is sensitive to data unavailability and attempts to access unavailable
data, IMS returns a status code indicating that it could not process the call. The
program then takes the appropriate action. A facility exists for the program to
initiate the same action that IMS would have taken if the program had been
insensitive to unavailable data.

IMS does not schedule batch programs if the data that the program can access is
unavailable. If the batch program is using block-level data sharing, it might
encounter unavailable data if the sharing system fails and the batch system
attempts to access data that was updated but not committed by the failed system.

The following conditions alone do not cause a batch program to fail during
initialization:
v A PCB refers to a HALDB.
v The use of DBRC is suppressed.

Integrity and Recovery Considerations

Chapter 3. Analyzing IMS Application Processing Requirements 47

|
|

|

|



However, without DBRC, a database call using a PCB for a HALDB is not allowed.
If the program is sensitive to unavailable data, such a call results in the status code
BA; otherwise, such a call results in message DFS3303I, followed by ABENDU3303.

Scheduling and Accessing Unavailable Databases
By using the INIT, INQY, SETS, SETU, and ROLS calls, the program can manage a data
environment where the program is scheduled with unavailable databases.

The INIT call informs IMS that the program is sensitive to unavailable data and
can accept the status codes that are issued when the program attempts to access
such data. The INIT call can also be used to determine the data availability for
each PCB.

The INQY call is operable in both batch and online IMS environments. IMS
application programs can use the INQY call to request information regarding output
destination, session status, the current execution environment, the availability of
databases, and the PCB address based on the PCBNAME. The INQY call is only
supported via the AIB interface (AIBTDLI or CEETDLI using the AIB rather than
the PCB address).

The SETS, SETU, and ROLS calls enable the application to define multiple points at
which to preserve the state of full-function (except HSAM) databases and message
activity. The application can then return to these points at a later time. By issuing a
SETS or SETU call before initiating a set of DL/I calls to perform a function, the
program can later issue the ROLS call if it cannot complete a function due to data
unavailability.

The ROLS call allows the program to roll back its IMS full-function database activity
to the state that it was in prior to a SETS or SETU call being issued. If the PSB
contains an MSDB or a DEDB, the SETS and ROLS (with token) calls are invalid. Use
the SETU call instead of the SETS call if the PSB contains a DEDB, MSDB, or GSAM
PCB.

Related Reading: For more information on using the SETS and SETU calls with the
ROLS call, see IMS Version 9: Application Programming: Database Manager.

The ROLS call can also be used to undo all update activity (database and messages)
since the last commit point and to place the current input message on the suspend
queue for later processing. This action is initiated by issuing the ROLS call without
a token or I/O area.

Restriction: With DB2 UDB for z/OS, you cannot use ROLS (with a token) or SETS.

Use of STAE or ESTAE and SPIE in IMS Programs
IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP,
BMP) regions, and the batch regions. In the control region, STAE or ESTAE
routines ensure that database logging and various resource cleanup functions are
complete. In the dependent region, STAE or ESTAE routines are used to notify the
control region of any abnormal termination of the application program or the
dependent region itself. If the control region is not notified of the dependent region
termination, resources are not properly released and normal checkpoint shutdown
might be prevented.

In the batch region, STAE or ESTAE routines ensure that database logging and
various resource cleanup functions are complete. If the batch region is not notified
of the application program termination, resources might not be properly released.

Integrity and Recovery Considerations

48 Application Programming: Design Guide

|
|
|



Two important aspects of the STAE or ESTAE facility are that:
v IMS relies on its STAE or ESTAE facility to ensure database integrity and

resource control.
v The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship
between the program and the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your application program.
However, if you believe that the STAE or ESTAE facility is required, you must
observe the following basic rules:
v When the environment supports STAE or ESTAE processing, the application

program STAE or ESTAE routines always get control before the IMS STAE or
ESTAE routines. Therefore, you must ensure that the IMS STAE or ESTAE exit
routines receive control by observing the following procedures in your
application program:
– Establish the STAE or ESTAE routine only once and always before the first

DL/I call.
– When using the STAE or ESTAE facility, the application program should not

alter the IMS abend code.
– Do not use the RETRY option when exiting from the STAE or ESTAE routine.

Instead, return a CONTINUE-WITH-TERMINATION indicator at the end of
the STAE or ESTAE processing. If your application program specifies the
RETRY option, be aware that IMS STAE or ESTAE exit routines will not get
control to perform cleanup. Therefore, system and database integrity might be
compromised.

– For PL/I use of STAE and SPIE, see the description of IMS considerations in
Enterprise PL/I for z/OS and OS/390 Programming Guide.

– For PL/I, COBOL, and C/MVS™, if you are using the AIBTDLI interface in a
non-Language Environment enabled system, you must specify NOSTAE and
NOSPIE. However, in Language Environment® Version 1.2 or later enabled
environment, the NOSTAE and NOSPIE restriction is removed.

v The application program STAE or ESTAE exit routine must not issue DL/I calls
(DB or TM) because the original abend might have been caused by a problem
between the application and IMS. A problem between the application and IMS
could result in recursive entry to STAE or ESTAE with potential loss of database
integrity, or in problems taking a checkpoint. This also could result in a hang
condition or an ABENDU0069 during termination.

Dynamic Allocation for IMS Databases
Use the dynamic allocation function to specify the JCL information for IMS
databases in a library instead of in the JCL of each batch or online job.

Related Reading: For additional information on the definitions for dynamic
allocation, see the description of the DFSMDA macro in IMS Version 9: Utilities
Reference: System.

If you use dynamic allocation, do not include JCL DD statements for any database
data sets that have been defined for dynamic allocation. Check with the DBA or
comparable specialist to determine which databases have been defined for dynamic
allocation.

Integrity and Recovery Considerations

Chapter 3. Analyzing IMS Application Processing Requirements 49



Dynamic Allocation for IMS Databases

50 Application Programming: Design Guide



Chapter 4. Analyzing CICS Application Processing
Requirements

This chapter provides information for writing application programs in a CICS
environment. See Chapter 3, “Analyzing IMS Application Processing
Requirements,” on page 29 for the corresponding information on IMS application
programming. This chapter explain the kinds of programs CICS supports and the
requirements that each satisfies.

The following topics provide additional information:
v “Deciding Your CICS Application's Requirements”
v “Accessing Databases With Your CICS Application Program” on page 53
v “Writing a CICS Program to Access IMS Databases” on page 54
v “Using Data Sharing for Your CICS Program” on page 58
v “Scheduling and Terminating a PSB (CICS Online Programs Only)” on page 59
v “Linking and Passing Control to Other Programs (CICS Online Programs Only)”

on page 59
v “How CICS Distributed Transactions Access IMS” on page 60
v “Maximizing the Performance of Your CICS System” on page 60
v “Programming Integrity and Database Recovery Considerations for Your CICS

Program” on page 61
v “Data Availability Considerations for Your CICS Program” on page 65
v “Use of STAE or ESTAE and SPIE in IMS Batch Programs” on page 67
v “Dynamic Allocation for IMS Databases” on page 68

Deciding Your CICS Application's Requirements
One of the steps of application design is to decide how the business processes, or
tasks can be best grouped into a set of programs that will efficiently perform the
required processing. Some of the considerations in analyzing processing
requirements are:

When the task must be performed

– Will it be scheduled unpredictably (for example on terminal demand) or
periodically (for example, weekly)?

How the program that performs the task is executed

– Will it be executed online, where response time is more important, or by
batch job submission, where a slower response time is acceptable?

The consistency of the processing components

– Does this action the program is to perform involve more than one type of
program logic? For example, does it involve mostly retrievals, and only one
or two updates? If so, you should consider separating the updates into a
separate program.

– Does this action involve several large groups of data? If it does, it might be
more efficient to separate the programs by the data they access.

Any special requirements about the data or processing

Security Should access to the program be restricted?

© Copyright IBM Corp. 1974, 2011 51

|



Recovery Are there special recovery considerations in the program's
processing?

Integrity Do other departments use the same data?

Answers to questions like these can help you decide on the number of application
programs that the processing will require, and on the types of programs that
perform the processing most efficiently. Although rules dealing with how many
programs can most efficiently do the required processing do not exist, here are
some suggestions:
v As you look at each programming task, examine the data and processing that

each task involves. If a task requires different types of processing and has
different time limitations (for example, weekly as opposed to monthly), that task
may be more efficiently performed by several programs.

v As you define each program, it is a good idea for maintenance and recovery
reasons to keep programs as simple as possible. The simpler a program is—the
less it does—the easier it is to maintain, and to restart after a program or system
failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available; the more limited the data accessed, the
more likely the data is to be available.
Similarly, if the data that the application requires is physically in one place, it
might be more efficient to have one program do more of the processing than
usual. These are considerations that depend on the processing and the data of
each application.

v Documenting each of the user tasks is helpful during the design process, and in
the future when others will work with your application. Be sure you are aware
of the standards in this area. The kind of information that is typically kept is
when the task is to be executed, a functional description, and requirements for
maintenance, security, and recovery.
Example: For the Current Roster process described under “Listing Data
Elements” on page 12, you might record the information shown in Figure 17.
How frequently the program is run is determined by the number of classes (20)
for which the Ed Center will print current rosters each week.

USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE: Included in Education DB maintenance.

SECURITY: None.

RECOVERY: After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Figure 17. Current Roster Task Description

Deciding Your CICS Application’s Requirements

52 Application Programming: Design Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Accessing Databases With Your CICS Application Program
When designing your program, consider the type of data it must access. The type
of data depends on the operating environment. The data from IMS and DB2 UDB
for z/OS databases, and z/OS files, that is available to CICS online and IMS batch
programs is shown in Table 14. Usage notes are also included.

Table 14. The Data that Your CICS Program Can Access

Type of Program IMS Databases
DB2 UDB for
z/OS Databases z/OS Files

CICS Online Yes1 Yes2 Yes3

DB Batch Yes Yes3 Yes

Notes:

1. Except for Generalized Sequential Access Method (GSAM) databases. GSAM enables
batch programs to access a sequential z/OS data set as a simple database.

2. IMS does not participate in the call process.

3. Access through CICS file control or transient data services.

Also, consider the type of database your program must access. As shown in
Table 15, the type of program you can write and database that can be accessed
depends on the operating environment. Table 15 also includes usage notes.

Table 15. Program and Database Options in the CICS Environments

Environment1
Type of Program
You Can Write Type of Database That Can Be Accessed

DB Batch DB Batch DB2 UDB for z/OS2

DL/I Full-function

GSAM

z/OS Files

DBCTL BMP DB2 UDB for z/OS

DEDBs

Full-function

GSAM

z/OS Files

CICS Online DB2 UDB for z/OS2

DEDBs

Full-function

z/OS Files (access through CICS file
control or transient data services)

Notes:

1. A third CICS environment, referred to as remote DL/I, also exists. In this environment, a
CICS system supports applications that issue DL/I calls but does not service the requests
itself.
It “function ships” the DL/I calls to another CICS system that is using DBCTL. For more
information on remote DL/I, see
CICS IMS Database Control Guide.

2. IMS does not participate in the call process.

The types of databases that can be accessed are:

Accessing Databases With Your CICS Application Program

Chapter 4. Analyzing CICS Application Processing Requirements 53



Full-Function Databases

Full-function databases are hierarchic databases that are accessed through Data
Language I (DL/I). DL/I calls enable application programs to retrieve, replace,
delete, and add segments to full-function databases. CICS online and BMP
programs can access the same database concurrently (if participating in IMS
data sharing); an IMS batch program must have exclusive access to the
database (if not participating in IMS data sharing). See “Using Data Sharing for
Your CICS Program” on page 58 for more details about when to use this
environment.
All types of programs (batch, BMPs, and online) can access full-function
databases.
Fast Path DEDBs

Data entry databases (DEDBs) are hierarchic databases for, and efficient access
to, large volumes of detailed data. In the DBCTL environment, CICS online and
BMP programs can access DEDBs.
DB2 UDB for z/OS Databases

DB2 UDB for z/OS databases are relational databases. Relational databases are
represented to application programs and users as tables and are processed
using a relational data language called Structured Query Language (SQL). DB2
UDB for z/OS databases can be processed by CICS online transactions, and by
IMS batch and BMP programs.
Related Reading: For information on processing DB2 UDB for z/OS databases,
see DB2 UDB for z/OS and OS/390 Application Programming and SQL Guide.
GSAM Databases

Generalized Sequential Access Method (GSAM) is an access method that
enables BMPs and batch programs to access a “flat” sequential z/OS data set as
a simple database. A GSAM database can be accessed by z/OS or CICS.
z/OS Files

CICS online and IMS batch programs can access z/OS files for their input,
processing, or output. Batch programs can access z/OS files directly; online
programs must access them through CICS file control or transient data services.

Writing a CICS Program to Access IMS Databases
This section explains the following kinds of application programs that CICS users
can write to process IMS databases:
v CICS online programs
v IMS batch programs
v IMS batch message processing (BMP) programs that are batch-oriented

As shown in Table 15 on page 53, the types of programs you can use depend on
whether you are running in the DBCTL environment. Within the different
environments, the type of program you write depends on the processing your
application requires. Each type of program answers different application
requirements.

Writing a CICS Online Program
These topics describe a CICS online program and can help you decide if an online
program is appropriate for your application.

Accessing Databases With Your CICS Application Program

54 Application Programming: Design Guide



Data That a CICS Online Program Can Access
CICS online programs run in the DBCTL environment and can access IMS
full-function databases, Fast Path DEDBs, DB2 UDB for z/OS databases, and z/OS
files.

Online programs that access IMS databases are executed in the same way as other
CICS programs.

Using a CICS Online Program
An online program runs under the control of CICS, and it accesses resources
concurrently with other online programs. Some of the application requirements
online programs can answer are:
v Information in the database must be available to many users.
v Program needs to communicate with terminals and other programs.
v Programs must be available to users at remote terminals.
v Response time is important.

The structure of an online program, and the way it receives status information,
depend on whether it is a call- or command-level program. However, both
command- and call-level online programs:
v Schedule a PSB (for CICS online programs). A PSB is automatically scheduled

for batch or BMP programs.
v Issue either commands or calls to access the database. Online programs cannot

mix commands and calls in one logical unit of work (LUW).
v Optionally, terminate a PSB for CICS online programs.
v Issue an EXEC CICS RETURN statement when they have finished their processing.

This statement returns control to the linking program. When the highest-level
program issues the RETURN statement, CICS regains control and terminates the
PSB if it has not yet been terminated.

Because an online application program can be used concurrently by several tasks,
it must be quasi-reentrant.

An online program in the DBCTL environment can use many IMS system service
requests.

Related Reading:

v For more information on writing these types of programs, see
– IMS Version 9: Application Programming: Database Manager or
– IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS

v For more details about programming techniques and restrictions, see CICS
Application Programming Reference.

v For a summary of the calls and commands an online program can issue, see
– IMS Version 9: Application Programming: Database Manager or
– IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS

DL/I database or system service requests must refer to one of the program
communication blocks (PCBs) from the list of PCBs passed to your program by
IMS. The PCB that must be used for making system service requests is called the
I/O PCB. When present, it is the first PCB in the list of PCBs.

Writing a CICS Program to Access IMS Databases

Chapter 4. Analyzing CICS Application Processing Requirements 55



For an online program in the DBCTL environment, the I/O PCB is optional. To use
the I/O PCB, you must indicate this in the application program when it schedules
the PSB.

Before you run your program, the program specification blocks (PSBs) and
database descriptions (DBDs) the program uses must be converted to internal
control block format using the IMS ACBGEN utility. (PSBs tell IMS an application
program's characteristics and use of data and terminals. DBDs tell IMS a database's
physical and logical characteristics.)

Related Reading: For more information on performing an ACBGEN and a
PSBGEN, see IMS Version 9: Utilities Reference: System.

Because an online program shares a database with other online programs, it may
affect the performance of your online system. For more information on what you
can do to minimize the effect your program has on performance, see “Maximizing
the Performance of Your CICS System” on page 60.

Writing an IMS Batch Program
The topics describe a batch program and can help you decide if this program is
appropriate for your application.

Data That a Batch Program Can Access
A batch program can access DL/I full-function, DB2 UDB for z/OS, and GSAM
databases, and z/OS files. A batch program cannot access DEDBs or MSDBs, and it
can run in the DBCTL environment.

Using a Batch Program
Batch programs typically run longer than online programs. If it is not participating
in IMS data sharing, a batch program runs by itself and does not compete with
other programs for database resources. Use a batch program to do a large number
of database updates or when you want to print a report. Batch programs:
v Typically produce a large amount of output—for example, reports.
v Are not executed by another program or user. They are usually scheduled at

specific time intervals (for example, weekly) and are started with JCL.
v Produce output that is not needed right away. The response time for batch

output is not as important as it usually is for online programs.

The structure of a batch program and the way it receives status information
depend on whether it is a command- or call-level program.

Related Reading: For more information on this topic, see:
v IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS

v IMS Version 9: Application Programming: Database Manager

Unlike online programs, batch programs do not schedule or terminate PSBs. This is
done automatically.

Batch programs can issue system service requests (such as checkpoint, restart, and
rollback) to perform functions such as dynamically backing out database changes
made by your program.

Related Reading: For a summary of the commands and calls, you can use in a
batch program, see:
v IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS

Writing a CICS Program to Access IMS Databases

56 Application Programming: Design Guide



v IMS Version 9: Application Programming: Database Manager

When performing a PSBGEN, you must define the language of the program that
will schedule the PSB. For your program to be able to successfully issue certain
system service requests, such as a checkpoint or a rollback request, an I/O PCB
must be available for your program. To obtain an I/O PCB, specify CMPAT=YES in
the PSBGEN statement. Make all batch programs sensitive to the I/O PCB so that
checkpoints are easily introduced. Design all batch programs with checkpoint and
restart in mind. Although the checkpoint support may not be needed initially, it is
easier to incorporate checkpoints initially than to try to fit them in later. With
checkpoints, it will be easier to convert batch programs to BMP programs or to
batch programs that use data sharing.

Related Reading: For more information about obtaining an I/O PCB, see
“Requesting an I/O PCB in Batch Programs” on page 62. For information on how
to perform a PSBGEN, see IMS Version 9: Utilities Reference: System.

Converting a Batch Program to a Batch-Oriented BMP
If you are running in the DBCTL environment, you can convert a batch program to
a batch-oriented BMP. Conversion to a BMP can be advantageous for these reasons:
v Logging is to the IMS log, which means that multiple logs are unnecessary.
v Automatic backout is available.
v Restart can be done automatically from the last checkpoint without changing the

JCL.
v Concurrent access to databases is possible. If you are needing to run your batch

programs offline, converting them to BMPs enables you to run them with the
online system, instead of having to wait until the online system is not running.
Running a batch program as a BMP can also keep the data more current.

v BMPs can access DEDBs.
v You can have a program that runs as either a batch or BMP program. However,

because batch programs require fewer checkpoint calls than BMPs (except when
data sharing), code checkpoint calls in a way that makes them easy to modify.
Also, if a program fails while running in a batch region, you must restart it in a
batch region. If a program fails in a BMP region, you must restart it in a BMP
region.

v If you are running sysplex data sharing, use of batch-oriented BMPs helps you
stay within the sysplex data sharing limit of 32 connections for each OSAM or
VSAM structure.

Requirements for converting a batch program to a BMP are:
v A BMP must have an I/O PCB. You can obtain an I/O PCB in batch by

specifying the compatibility option in the program specification block (PSB) for
the program.
Related Reading: For more information on the compatibility option in the PSB,
see IMS Version 9: Utilities Reference: System.

v BMPs should issue checkpoint calls more frequently than batch programs.
However, batch programs in a data-sharing environment must also issue
checkpoint calls frequently.

Writing a Batch-Oriented BMP Program
These topics describe a batch-oriented BMP program and can help you decide if
this program is appropriate for your application.

Writing a CICS Program to Access IMS Databases

Chapter 4. Analyzing CICS Application Processing Requirements 57



Data That a Batch-Oriented BMP Can Access
Batch-oriented batch message processing (BMP) programs can access full-function,
DEDB, DB2 UDB for z/OS, and GSAM databases and z/OS files. Batch-oriented
BMPs can be run only in a DBCTL environment.

Using a Batch-Oriented BMP
A batch-oriented BMP performs batch processing online. A batch-oriented BMP can
be simply a batch program that runs online. You can even run the same program
as a BMP or as a batch program.

Recommendations: If the program performs a large number of database updates
without issuing checkpoint calls, it may be more efficient to run it as a batch
program so that it does not degrade the performance of the online system.

To use batch-oriented BMPs most efficiently, avoid a large amount of batch-type
processing online. If you have a BMP that performs time-consuming processing
such as report writing and database scanning, schedule it during non-peak hours
of processing.

Because BMPs can degrade response times, carefully consider the response time
requirements as you decide on the extent to which you will use batch message
processing. You should examine the trade-offs in using BMPs and use them
accordingly.

Recovering a Batch-Oriented BMP
Issuing checkpoint calls is an important part of batch-oriented BMP processing,
because commit points do not occur automatically as they do in some other types
of programs.

Unlike most batch programs, a BMP can share resources with CICS online
programs using DBCTL. In addition to committing database changes and
providing places from which to restart (as for a batch program), checkpoint calls
release resources locked for the program. For more information on issuing
checkpoint calls, see “Checkpoints in Batch-Oriented BMPs” on page 45.

If a batch-oriented BMP fails, IMS backs out the database updates the program has
made since the last commit point. You must restart the program with JCL. If the
BMP processes z/OS files, you must provide your own method of taking
checkpoints and restarting.

Using Data Sharing for Your CICS Program
If you use data sharing, your programs can participate in IMS data sharing. Under
data sharing, CICS online and BMP programs can access the same DL/I database
concurrently.

Batch programs in a data-sharing environment can access databases used by other
batch programs, and by CICS and IMS online programs. With data sharing, you
can share data directly and your program's requests need not go through a mirror
transaction.

Related Reading: For more information on sharing a database with an IMS system,
see IMS Version 9: Administration Guide: System.

Writing a CICS Program to Access IMS Databases

58 Application Programming: Design Guide



Scheduling and Terminating a PSB (CICS Online Programs Only)
Before your online program issues any DL/I calls, it must indicate to IMS its intent
to use a particular PSB by issuing either a PCB call or a SCHD command. In addition
to indicating which PSB your program will use, the PCB call obtains the address of
the PCBs in the PSB. When you no longer need a PSB, you can terminate it using
the TERM request. The rest of this section describes the use of the TERM request and
how it can affect your system.

In a CICS online program, you use a PCB call or SCHD command (for
command-level programs) to obtain the PSB for your program. Because CICS
releases the PSB your program uses when the transaction ends, your program need
not explicitly terminate the PSB. Only use a terminate request if you want to:
v Use a different PSB
v Commit all the database updates and establish a logical unit of work for backing

out updates
v Free IMS resources for use by other CICS tasks

A terminate request causes a CICS sync point, and a CICS sync point terminates
the PSB. For more information about CICS recovery concepts, see the appropriate
CICS publication.

Do not use terminate requests for other reasons because:
v A terminate request forces a CICS sync point. This sync point releases all

recoverable resources and IMS database resources that were enqueued for this
task.
If the program continues to update other CICS resources after the terminate
request and then terminates abnormally, only those resources that were updated
after the terminate request are backed out. Any IMS changes made by the
program are not backed out.

v IMS lock management detects deadlocks that occur if two transactions are
waiting for segments held by the other.
When a deadlock is detected, one transaction is abnormally terminated.
Database changes are backed out to the last TERM request. If a TERM request or
CICS sync point was issued prior to the deadlock, CICS does not restart the
transaction.
Related Reading: For a complete description of transaction restart
considerations, see CICS Recovery and Restart Guide.

v Issuing a terminate request causes additional logging.
v If the terminal output requests are issued after a terminate request and the

transaction fails at this point, the terminal operator does not receive the
message.
The terminal operator may assume that the entire transaction failed, and reenter
the input, thus repeating the updates that were made before the terminate
request. These updates were not backed out.

Linking and Passing Control to Other Programs (CICS Online
Programs Only)

Use CICS to link your program to other programs without losing access to the
facilities acquired in the linking program, as in the following examples:

Scheduling and Terminating a PSB

Chapter 4. Analyzing CICS Application Processing Requirements 59



v You could schedule a PSB and then link to another program using a LINK
command. On return from that program, the PSB is still scheduled.

v Similarly, you could pass control to another program using the XCTL command,
and the PSB remains scheduled until that program issues an EXEC CICS
RETURN statement. However, when you pass control to another program using
XCTL, the working storage of the program passing control is lost. If you want to
retain the working storage for use by the program being linked to, you must
pass the information in the COMMAREA.

Recommendation: To simplify your work, instead of linking to another program,
you can issue all DL/I requests from one program module. This helps to keep the
programming simple and easy to maintain.

Terminating a PSB or issuing a sync point affects the linking program. For
example, a terminate request or sync point that is issued in the program that was
linked causes the release of CICS resources enqueued in the linking program.

Recommendation: Do not preload your application program if it uses the XCTL
command.

How CICS Distributed Transactions Access IMS
CICS can divide a single, logical unit of work into separate CICS transactions and
coordinate the sync point globally. If such CICS transactions access DBCTL, locking
and buffer management issues might occur. To IMS, the transactions are separate
units of work, on different DBCTL threads, and they do not share locks or buffers.
For example, if a global transaction runs, obtains a database lock, and reaches the
commit point, CICS does not process the synchronization point until the other
transactions in the CICS unit of recovery (UOR) are ready to commit. If a second
transaction in the same CICS UOR requests the same lock as that held by the first
transaction, the second transaction is held in a lock wait state. The first transaction
cannot complete the sync point and release the lock until the second transaction
also reaches the commit point, but this cannot happen because the second
transaction is in a lock wait state. You must ensure that this type of collision does
not occur with CICS distributed transactions that access IMS.

Maximizing the Performance of Your CICS System
When you write programs that share data with other programs (for example, a
program that will participate in IMS data sharing or a BMP), be aware of how
your program affects the performance of the online system. This section explains
some things you can do to minimize the effect your program has on that
performance.

A BMP program, in particular, can affect the performance of the CICS online
transactions. This is because BMP programs usually make a larger number of
database updates than CICS online transactions, and a BMP program is more likely
to hold segments that CICS online programs need. Limit the number of segments
held by a BMP program, so CICS online programs need not wait to acquire them.

One way to limit the number of segments held by a BMP or batch program that
participates in IMS data sharing is to issue checkpoint requests in your program to
commit database changes and release segments held by the program. When
deciding how often to issue checkpoint requests, you can use one or more of the
following techniques:

Linking and Passing Control

60 Application Programming: Design Guide

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|



v Divide the program into small logical units of work, and issue a checkpoint call
at the end of each unit.

v Issue a checkpoint call after a certain number of DL/I requests have been issued,
or after a certain number of transactions are processed.

In CICS online programs, release segments for use by other transactions to
maximize the performance of your online system. (Ordinarily, database changes are
committed and segments are released only when control is returned to CICS.) To
more quickly free resources for use by other transactions, you can issue a TERM
request to terminate the PSB. However, less processing overhead generally occurs
if the PSB is terminated when control is returned to CICS.

Programming Integrity and Database Recovery Considerations for
Your CICS Program

This section explains how IMS and CICS protect data integrity for CICS online
programs, and how you can plan ahead for recovering batch and BMP programs.

How IMS Protects Data Integrity for Your Program (CICS
Online Programs)

IMS protects the integrity of the database for programs that share data by:
v Preventing other application programs with update capability from accessing

any segments in the database record your program is processing, until your
program finishes with that record and moves to a new database record in the
same database.

v Preventing other application programs from accessing segments that your
program deletes, replaces, or inserts, until your program reaches a sync point.
When your program reaches a sync point, the changes your program has made
to the database become permanent, and the changed data becomes available to
other application programs.
Exception: If PROCOPT=GO has been defined during PSBGEN for your
program, your program can access segments that have been updated but not
committed by another program.

v Backing out database updates made by an application program that terminates
abnormally.

You may also want to protect the data your program accesses by retaining
segments for the sole use of your program until your program reaches a sync
point—even if you do not update the segments. (Ordinarily, if you do not update
the segments, IMS releases them when your program moves to a new database
record.) You can use the Q command code to reserve segments for the exclusive
use of your program. You should use this option only when necessary because it
makes data unavailable to other programs and can have an impact on
performance.

Recovering Databases Accessed by Batch and BMP Programs
This section describes the planning you must do for recovering databases accessed
by batch or BMP programs. CICS recovers databases accessed by CICS online
programs in the same way it handles other recoverable CICS resources. For
example, if an IMS transaction terminates abnormally, CICS and IMS back out all
database updates to the last sync point.

Maximizing System Performance

Chapter 4. Analyzing CICS Application Processing Requirements 61



For batch or BMP programs, do the following:
v Take checkpoints in your program to commit database changes and provide

places from which your program can be restarted.
v Provide the code for or issue a request to restart your program.

You may also want to back out the database changes that have been made by a
batch program that has not yet committed these changes.

To perform these tasks, you use system service calls, described in more detail in
the appropriate application programming book for your environment.

Requesting an I/O PCB in Batch Programs
For your program to successfully issue any system service request, an I/O PCB
must have been previously requested. See IMS Version 9: Application Programming:
Database Manager for details on how to request an I/O PCB in your program.

Taking Checkpoints in Batch and BMP Programs
Taking checkpoints in batch and BMP programs is important for two reasons:

Recovery

Checkpoints establish places in your program from which your program could
be restarted, in the event of a program or system failure. If your program
abnormally terminates after issuing a checkpoint request, database changes will
be backed out to the point at which the checkpoint request was issued.
Integrity

Checkpoints also commit the changes your program has made to the database.

In addition to providing places from which to restart your program and
committing database changes, issuing checkpoint calls in a BMP program or in a
program participating in IMS data sharing releases database segments for use by
other programs.

When a batch or BMP program issues a checkpoint request, IMS writes a record
containing a checkpoint ID to the IMS/ESA® system log.

When your application program reaches a point during its execution where you
want to make sure that all changes made to that point have been physically
entered in the database, issue a checkpoint request. If some condition causes your
program to fail before its execution is complete, the database must be restored to
its original state. The changes made to the database must be backed out so that the
database is not left in a partially updated condition for access by other application
programs.

If your program runs a long time, you can reduce the number of changes that
must be backed out by taking checkpoints in your program. Then, if your program
terminates abnormally, only the database updates that occurred after the
checkpoint must be backed out. You can also restart the program from the point at
which you issued the checkpoint request, instead of having to restart it from the
beginning.

Issuing a checkpoint call cancels your position in the database.

Issue a checkpoint call just before issuing a Get Unique call, which reestablishes
your position in the database record after the checkpoint is taken.

Integrity and Recovery Considerations

62 Application Programming: Design Guide



The Kinds of Checkpoints You Can Use: The two kinds of checkpoint calls are:
basic and symbolic.See Both kinds commit your program's changes to the database
and establish places from which your program can be restarted:

Batch and BMP programs can issue basic checkpoint calls using the CHKP call.
When you use basic checkpoint calls, you must provide the code for restarting the
program after an abnormal termination.

Batch and BMP programs can also issue symbolic checkpoint calls. You can issue a
symbolic checkpoint call by using the CHKP call. Like the basic checkpoint call, the
symbolic checkpoint call commits changes to the database and establishes places
from which the program can be restarted. In addition, the symbolic checkpoint call:
v Works with the Extended Restart call to simplify program restart and recovery.
v Lets you specify as many as seven data areas in the program to be checkpointed.

When you restart the program, the restart call restores these areas to the way
they were when the program terminated abnormally.

Specifying a Checkpoint ID: Each checkpoint call your program issues must
have an identification, or ID. Checkpoint IDs must be 8 bytes in length and should
contain printable EBCDIC characters.

When you want to restart your program, you can supply the ID of the checkpoint
from which you want the program to be started. This ID is important because
when your program is restarted, IMS then searches for checkpoint information
with an ID matching the one you have supplied. The first matching ID that IMS
encounters becomes the restart point for your program. This means that checkpoint
IDs must be unique both within each application program and among application
programs. If checkpoint IDs are not unique, you cannot be sure that IMS will
restart your program from the checkpoint you specified.

One way to make sure that checkpoint IDs are unique within and among programs
is to construct IDs in the following order:
v Three bytes of information that uniquely identifies your program.
v Five bytes of information that serves as the ID within the program, for example,

a value that is increased by 1 for each checkpoint command or call, or a portion
of the system time obtained at program start by issuing the TIME macro.

Specifying Checkpoint Frequency: To determine the frequency of checkpoint
requests, you must consider the type of program and its performance
characteristics.

In Batch Programs: When deciding how often to issue checkpoint requests in a
batch program, you should consider the time required to back out and reprocess
the program after a failure. For example, if you anticipate that the processing your
program performs will take a long time to back out, you should establish
checkpoints more frequently.

If you might back out of the entire program, issue the checkpoint request at the
very beginning of the program. IMS backs out the database updates to the
checkpoint you specify. If the database is updated after the beginning of the
program and before the first checkpoint, IMS is not able to back out these database
updates.

Integrity and Recovery Considerations

Chapter 4. Analyzing CICS Application Processing Requirements 63

|
|
|
|
|



In a data-sharing environment, also consider the impact of sharing resources with
other programs on your online system. You should issue checkpoint calls more
frequently in a batch program that shares data with online programs, to minimize
resource contention.

It is a good idea to design all batch programs with checkpoint and restart in mind.
Although the checkpoint support may not be needed initially, it is easier to
incorporate checkpoint calls initially than to try to fit them in later. If the
checkpoint calls are incorporated, it is easier to convert batch programs to BMP
programs or to batch programs that use data sharing.

In BMP Programs: When deciding how often to issue checkpoint requests in a
BMP program, consider the performance of your CICS online system. Because
these programs share resources with CICS online transactions, issue checkpoint
requests to release segments so CICS online programs need not wait to acquire
them. “Maximizing the Performance of Your CICS System” on page 60 explains
this in more detail.

Printing Checkpoint Log Records: You can print checkpoint log records by using
the IMS File Select and Formatting Print Program (DFSERA10). With this utility,
you can select and print log records based on their type, the data they contain, or
their sequential positions in the data set. Checkpoint records are type 18 log
records. IMS Version 9: Utilities Reference: System describes this program.

Backing Out Database Changes
If your program terminates abnormally, the database must be restored to its
previous state and uncommitted changes must be backed out. Changes made by a
BMP or CICS online program are automatically backed out. Database changes
made by a batch program might or might not be backed out, depending on
whether your system log is on DASD.

For a Batch Program: What happens when a batch program terminates
abnormally and how you recover the database depend on the storage medium for
the system log. You can specify that the system log is to be stored on either DASD
or on tape.

When the system log is on DASD

You can specify that IMS is to dynamically back out the changes that a batch
program has made to the database since its last commit point by coding
BKO=Y in the JCL. IMS performs dynamic backout for a batch program when
an IMS-detected failure occurs, such as when a deadlock is detected (for batch
programs that share data).
DASD logging also makes it possible for batch programs to issue the rollback
(ROLB) system service request, in addition to ROLL. The ROLB request causes IMS
to dynamically back out the changes the program has made to the database
since its last commit point, and then to return control to the application
program.
Dynamically backing out database changes has the following advantages:
– Data accessed by the program that failed is immediately available to other

programs. Otherwise, if batch backout is not used, data is not available to
other programs until the IMS Batch Backout utility has been run to back out
the database changes.

– If two programs are deadlocked, one of the programs can continue
processing. Otherwise, if batch backout is not used, both programs will fail.
(This applies only to batch programs that share data.)

Integrity and Recovery Considerations

64 Application Programming: Design Guide



Instead of using dynamic backout, you can run the IMS Batch Backout utility to
back out changes.
When the system log is on tape

If a batch application program terminates abnormally and the system log is
stored on tape, you must use the IMS Batch Backout utility to back out the
program's changes to the database.

Related Reading: For more information, see IMS Version 9: Utilities Reference:
Database and Transaction Manager.

For BMP Programs: If your program terminates abnormally, the changes the
program has made since the last commit point are backed out. If a system failure
occurs, or if the CICS control region or DBCTL terminates abnormally, DBCTL
emergency restart backs out all changes made by the program since the last
commit point. You need not use the IMS Batch Backout utility because DBCTL
backs out the changes. If you need to back out all changes, you can use the ROLL
system service call to dynamically back out database changes.

Restarting Your Program
If you issue symbolic checkpoint calls (for batch and BMP programs), you can use
the Extended Restart system service request (XRST) to restart your program after an
abnormal termination. The XRST call restores the program's data areas to the way
they were when the program terminated abnormally, and it restarts the program
from the last checkpoint request the program issued before terminating abnormally.

If you use basic checkpoint calls (for batch and BMP programs), you must provide
the necessary code to restart the program from the latest checkpoint in the event
that it terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning
data in an HDAM database. Your program writes a database record containing
repositioning information to the HDAM database. It updates this record at
intervals. When the program terminates, the database record is deleted. At the
completion of the XRST call, the I/O area always contains a checkpoint ID used by
the restart. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed
by 4 blanks. If the 8-byte ID consists of all blanks, then XRST will return the 14-byte
timestamp ID. Also, check the status code in the PCB. The only successful status
code for an XRST call is a row of blanks.

Data Availability Considerations for Your CICS Program
Unfortunately, the data that a program needs to access may sometimes be
unavailable. This section describes the situations where data is unavailable,
whether a program is scheduled in these situations, and the functions your
program might need to use when data is not available.

Unavailability of a Database
The conditions that make an entire database unavailable for both read and update
are the following:
v A STOP command has been issued for the database.
v A DBRECOVERY (DBR) command has been issued for the database.
v DBRC authorization for the database has failed.

The conditions that make a database available for read but not for update are:
v A DBDUMP command has been issued for the database.

Integrity and Recovery Considerations

Chapter 4. Analyzing CICS Application Processing Requirements 65



v The database access value is RD (read).

In a data-sharing environment, the command or error that created any of these
conditions may have originated on the other system which is sharing data.

Whether a program is scheduled or whether an executing program can schedule a
PSB when the database is unavailable depends on the type of program and the
environment:
v A batch program

IMS does not schedule a batch program when one of the databases that the
program can access is not available.
In a non-data sharing environment, DBRC authorization for a database may fail
because the database is currently authorized to a DB/DC environment. In a
data-sharing environment, a CICS or a DBCTL master terminal global command
to recover a database or to dump a database may make the database unavailable
to a batch program.
The following conditions alone do not cause a batch program to fail during
initialization:
– A PCB refers to a HALDB.
– The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not
allowed. If the program is sensitive to unavailable data, such a call results in the
status code BA; otherwise, such a call results in message DFS3303I, followed by
ABENDU3303.

v An online or BMP program in the DBCTL environment.
When a program executing in this environment attempts to schedule with a PSB
containing one or more full-function databases that are unavailable, the
scheduling is allowed. If the program does not attempt to access the unavailable
database, it can function normally. If it does attempt to access the database, the
result is the same as when the database is available but some of the data in it is
not available.

Unavailability of Some Data in a Database
In addition to the situation where the entire database is unavailable, there are other
situations where a limited amount of data is unavailable. One example is a failure
situation involving data sharing where the IMS system knows which locks were
held by a sharing IMS at the time the sharing IMS system failed. This IMS system
continues to use the database but rejects access to the data that the failed IMS
system held locked at the time of failure.

A batch program, an online program, or a BMP program can be operating in the
DBCTL environment. If so, the online or BMP programs may have been scheduled
when an entire database was not available. The following options apply to these
programs when they attempt to access data and either the entire database is
unavailable or only some of the data in the database is unavailable.

Programs executing in these environments have an option of being sensitive or
insensitive to data unavailability.
v When the program is insensitive to data unavailability and attempts to access

unavailable data, the program fails with a 3303 abend. For online programs, this
is a pseudo-abend. For batch programs, it is a real abend. However, if the
database is unavailable because dynamic allocation failed, a call results in an AI
(unable to open) status code.

Data Availability Considerations

66 Application Programming: Design Guide

|
|

|

|

|
|
|
|



v When the program is sensitive to data unavailability and attempts to access
unavailable data, IMS returns a status code indicating that it could not process
the request. The program can then take the appropriate action. A facility exists
for the program to then initiate the same action that IMS would have taken if
the program had been insensitive to unavailable data.

The program issues the INIT call or ACCEPT STATUS GROUP A command to inform
IMS that it is sensitive to unavailable data and can accept the status codes issued
when the program attempts to access such data. The INIT request can also be used
to determine data availability for each PCB in the PSB.

The SETS or SETU and ROLS Functions
The SETS or SETU and ROLS requests allow an application to define multiple points
at which to preserve the state of full-function databases. The application can then
return to these points at a later time. By issuing a SETS or SETU request before
initiating a set of DL/I requests to perform a function, the program can later issue
the ROLS request if it cannot complete the function due possibly to data
unavailability.

ROLS allows the program to roll back its IMS activity to the state prior to the SETS
or SETU call.

Restriction: SETS or SETU and ROLS only roll back the IMS updates. They do not roll
back the updates made using CICS file control or transient data.

Additionally, you can use the ROLS call or command to undo all database update
activity since the last checkpoint.

Use of STAE or ESTAE and SPIE in IMS Batch Programs
This section describes using STAE or ESTAE and SPIE in an IMS batch program.
For information on using these routines in CICS online programs, refer to CICS
manuals.

IMS uses STAE or ESTAE routines in the IMS batch regions to ensure that database
logging and various resource cleanup functions are completed. Two important
aspects of the STAE or ESTAE facility are that:
v IMS relies on its STAE or ESTAE facility to ensure database integrity and

resource control.
v The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship
between the program and the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your batch application
program. However, if you believe that the STAE or ESTAE facility is required, you
must observe the following basic rules:
v When the environment supports STAE or ESTAE processing, the application

program STAE or ESTAE routines always get control before the IMS STAE or
ESTAE routines. Therefore, you must ensure that the IMS STAE or ESTAE exit
routines receive control by observing the following procedures in your
application program:
– Establish the STAE or ESTAE routine only once and always before the first

DL/I call.

Data Availability Considerations

Chapter 4. Analyzing CICS Application Processing Requirements 67



– When using the STAE or ESTAE facility, the application program must not
alter the IMS abend code.

– Do not use the RETRY option when exiting from the STAE or ESTAE routine.
Instead, return a CONTINUE-WITH-TERMINATION indicator at the end of
the STAE or ESTAE processing. If your application program does specify the
RETRY option, be aware that IMS STAE or ESTAE exit routines will not get
control to perform cleanup. Therefore, system and database integrity may be
compromised.

– For PL/I use of STAE and SPIE, see the description of IMS considerations in
Enterprise PL/I for z/OS and OS/390 Programming Guide.

– For PL/I, COBOL, and C/MVS, if you are using the AIBTDLI interface in a
non-Language Environment enabled environment, you must specify NOSTAE
or NOSPIE. However, in a Language Environment Version 1.2 or later enabled
environment, the NOSTAE and NOSPIE restriction is removed.

v The application program STAE/ESTAE exit routine must not issue DL/I calls
because the original abend may have been caused by a problem between the
application and IMS. This would result in recursive entry to STAE/ESTAE with
potential loss of database integrity or in problems taking a checkpoint.

Dynamic Allocation for IMS Databases
Use the dynamic allocation function to specify the JCL information for IMS
databases in a library instead of in the JCL of each batch job or in the JCL for
DBCTL. If you use dynamic allocation, do not include JCL DD statements for any
database data sets that have been defined for dynamic allocation. Check with the
database administrator (DBA) or comparable specialist at to determine which
databases have been defined for dynamic allocation.

Related Reading: For more information on the definitions for dynamic allocation,
see the DFSMDA macro in IMS Version 9: Utilities Reference: System.

Use of STAE, ESTAE, and SPIE

68 Application Programming: Design Guide



Chapter 5. Gathering Requirements for Database Options

This chapter guides you in gathering information that the database administrator
(DBA) can use in designing a database and implementing that design. After
designing hierarchies for the databases that your application will access, the DBA
evaluates database options in terms of which options will best meet application
requirements. Whether these options are used depends on the collected
requirements of the applications. To design an efficient database, the DBA needs
information about the individual applications. This chapter describes the type of
information that can be helpful to the DBA, how the information you are gathering
relates to different database options, and the different aspects of your application
that you need to examine.

The following topics provide additional information:
v “Analyzing Data Access”
v “Understanding How Data Structure Conflicts Are Resolved” on page 77
v “Providing Data Security” on page 85
v “Read Without Integrity” on page 90

Analyzing Data Access
The DBA chooses a type of database, based on how the majority of programs that
use the database will access the data. IMS databases are categorized according to
the access method used. The following is a list of the types of databases that can
be defined:

HDAM (Hierarchical Direct Access Method)
PHDAM (Partitioned Hierarchical Direct Access Method)
HIDAM (Hierarchical Indexed Direct Access Method)
PHIDAM (Partitioned Hierarchical Indexed Direct Access Method)
MSDB (Main Storage Database)
DEDB (Data Entry Database)
HSAM (Hierarchical Sequential Access Method)
HISAM (Hierarchical Indexed Sequential Access Method)
GSAM (Generalized Sequential Access Method)
SHSAM (Simple Hierarchical Sequential Access Method)
SHISAM (Simple Hierarchical Indexed Sequential Access Method)

Important: PHDAM and PHIDAM are the partitioned versions of the HDAM and
HIDAM database types, respectively. The corresponding descriptions of the HDAM
and HIDAM database types therefore apply to PHDAM and PHIDAM in the these
sections .

Some of the information that you can gather to help the DBA with this decision
answers questions like the following:
v To access a database record, a program must first access the root of the record.

How will each program access root segments?
Directly
Sequentially

© Copyright IBM Corp. 1974, 2011 69



Both
v The segments within the database record are the dependents of the root

segment. How will each program access the segments within each database
record?

Directly
Sequentially
Both

It is important to note the distinction between accessing a database record and
accessing segments within the record. A program could access database records
sequentially, but after the program is within a record, the program might access
the segments directly. These are different, and can influence the choice of access
method.

v To what extent will the program update the database?
By adding new database records?
By adding new segments to existing database records?
By deleting segments or database records?

Again, note the difference between updating a database record and updating a
segment within the database record.

The following topics provide additional information:
v “Direct Access”
v “Sequential Access” on page 74
v “Accessing z/OS Files through IMS: GSAM” on page 76
v “Accessing IMS Data through z/OS: SHSAM and SHISAM” on page 76

Direct Access
The advantage of direct access processing is that you can get good results for both
direct and sequential processing. Direct access means that by using a randomizing
routine or an index, IMS can find any database record that you want, regardless of
the sequence of database records in the database.

IMS full function has four direct access methods.
v HDAM and PHDAM process data directly by using a randomizing routine to

store and locate root segments.
v HIDAM and PHIDAM use an index to help them provide direct processing of

root segments.

The direct access methods use pointers to maintain the hierarchic relationships
between segments of a database record. By following pointers, IMS can access a
path of segments without passing through all the segments in the preceding paths.

Some of the requirements that direct access satisfies are:
v Fast direct processing of roots using an index or a randomizing routine
v Sequential processing of database records with HIDAM and PHIDAM using the

index
v Fast access to a path of segments using pointers

In addition, when you delete data from a direct-access database, the new space is
available almost immediately. This gives you efficient space utilization; therefore,

Analyzing Data Access

70 Application Programming: Design Guide



reorganization of the database is often unnecessary. Direct access methods
internally maintain their own pointers and addresses.

A disadvantage of direct access is that you have a larger IMS overhead because of
the pointers. But if direct access fulfills your data access requirements, it is more
efficient than using a sequential access method.

The following topics provide additional information:
v “Primarily Direct Processing: HDAM”
v “Direct and Sequential Processing: HIDAM” on page 72
v “Main Storage Database: MSDB” on page 73
v “Data Entry Database: DEDB” on page 74

Primarily Direct Processing: HDAM
Important: PHDAM is the partitioned version of the HDAM database type. The
corresponding descriptions of the HDAM database type therefore apply to
PHDAM in the these sections .

HDAM is efficient for a database that is usually accessed directly but sometimes
sequentially. HDAM uses a randomizing routine to locate its root segments and
then chains dependent segments together according to the pointer options chosen.
The z/OS access methods that HDAM can use are Virtual Storage Access Method
(VSAM) and Overflow Storage Access Method (OSAM).

The requirements that HDAM satisfies are:
v Direct access of roots by root keys because HDAM uses a randomizing routine

to locate root segments
v Direct access of paths of dependents
v Adding new database records and new segments because the new data goes into

the nearest available space
v Deleting database records and segments because the space created by a deletion

can be used by any new segment

HDAM Characteristics: An HDAM database:
v Can store root segments anywhere. Root segments do not need to be in sequence

because the randomizing routine locates them.
v Uses a randomizing routine to locate the relative block number and root anchor

point (RAP) within the block that points to the root segment.
v Accesses the RAPs from which the roots are chained in physical sequence. Then

the root segments that are chained from the root anchors are returned. Therefore,
sequential retrieval of root segments from HDAM is not based on the results of
the randomizing routine and is not in key sequence unless the randomizing
routine put them into key sequence.

v May not give the desired result for some calls unless the randomizing module
causes the physical sequence of root segments to be in the key sequence. For
example, a GU call for a root segment that is qualified as less than or equal to a
root key value would scan in physical sequence for the first RAP of the first
block. This may result in a not-found condition, even though segments meeting
the qualification do exist.

For dependent segments, an HDAM database:
v Can store them anywhere
v Chains all segments of one database record together with pointers

Analyzing Data Access

Chapter 5. Gathering Requirements for Database Options 71



An Overview of How HDAM Works: This section contains diagnosis,
modification, or tuning information.

When a database record is stored in an HDAM database, HDAM keeps one or
more RAPs at the beginning of each physical block. The RAP points to a root
segment. HDAM also keeps a pointer at the beginning of each physical block that
points to any free space in the block. When you insert a segment, HDAM uses this
pointer to locate free space in the physical block. To locate a root segment in an
HDAM database, you give HDAM the root key. The randomizing routine gives it
the relative physical block number and the RAP that points to the root segment.
The specified RAP number gives HDAM the location of the root within a physical
block.

Although HDAM can place roots and dependents anywhere in the database, it is
better to choose HDAM options that keep roots and dependents close together.

HDAM performance depends largely on the randomizing routine you use.
Performance can be very good, but it also depends on other factors such as:
v The block size you use
v The number of RAPs per block
v The pattern for chaining together different segments. You can chain segments of

a database record in two ways:
– In hierarchic sequence, starting with the root
– In parent-to-dependent sequence, with parents having pointers to each of

their paths of dependents

To use HDAM for sequential access of database records by root key, you need to
use a secondary index or a randomizing routine that stores roots in physical key
sequence.

Direct and Sequential Processing: HIDAM
Important: PHIDAM is the partitioned version of the HIDAM database type. The
corresponding descriptions of the HIDAM database type therefore apply to
PHIDAM in the these sections .

HIDAM is the access method that is most efficient for an approximately equal
amount of direct and sequential processing. The z/OS access methods it can use
are VSAM and OSAM. The specific requirements that HIDAM satisfies are:
v Direct and sequential access of records by their root keys
v Direct access of paths of dependents
v Adding new database records and new segments because the new data goes into

the nearest available space
v Deleting database records and segments because the space created by a deletion

can be used by any new segment

HIDAM can satisfy most processing requirements that involve an even mixture of
direct and sequential processing. However, HIDAM is not very efficient with
sequential access of dependents.

HIDAM Characteristics: For root segments, a HIDAM database:
v Initially loads them in key sequence
v Can store new root segments wherever space is available

Analyzing Data Access

72 Application Programming: Design Guide



v Uses an index to locate a root that you request and identify by supplying the
root's key value

For dependent segments, a HIDAM database:
v Can store segments anywhere, preferably fairly close together
v Chains all segments of a database record together with pointers

An Overview of How HIDAM Works: This section contains diagnosis,
modification, or tuning information.

HIDAM uses two databases. The primary database holds the data. An index
database contains entries for all of the root segments in order by their key fields.
For each key entry, the index database contains the address of that root segment in
the primary database.

When you access a root, you supply the key to the root. HIDAM looks the key up
in the index to find the address of the root and then goes to the primary database
to find the root.

HIDAM chains dependent segments together so that when you access a dependent
segment, HIDAM uses the pointer in one segment to locate the next segment in the
hierarchy.

When you process database records directly, HIDAM locates the root through the
index and then locates the segments from the root. HIDAM locates dependents
through pointers.

If you plan to process database records sequentially, you can specify special
pointers in the DBD for the database so that IMS does not need to go to the index
to locate the next root segment. These pointers chain the roots together. If you do
not chain roots together, HIDAM always goes to the index to locate a root
segment. When you process database records sequentially, HIDAM accesses roots
in key sequence in the index. This only applies to sequential processing; if you
want to access a root segment directly, HIDAM uses the index, and not pointers in
other root segments, to find the root segment you have requested.

Main Storage Database: MSDB
Use MSDBs to store the most frequently-accessed data. MSDBs are suitable for
applications such as general ledger applications in the banking industry.

MSDB Characteristics: MSDBs reside in virtual storage, enabling application
programs to avoid the I/O activity that is required to access them. The two kinds
of MSDBs are terminal-related and non-terminal-related.

In a terminal-related MSDB, each segment is owned by one terminal, and each
terminal owns only one segment. One use for this type of MSDB is an application
in which each segment contains data associated with a logical terminal. In this type
of application, the program can read the data (perhaps for reporting purposes), but
cannot update it. A non-terminal-related MSDB stores data that is needed by many
users during the same time period. It can be updated and read from all terminals
(for example, a real time inventory control application, where reduction of
inventory can be noted from many cash registers).

Analyzing Data Access

Chapter 5. Gathering Requirements for Database Options 73



An Overview of How MSDBs Work:

Diagnosis, Modification or Tuning Information

MSDB segments are stored as root segments only. Only one type of pointer, the
forward chain pointer, is used. This pointer connects the segment records in the
database.

End of Diagnosis, Modification or Tuning Information

Data Entry Database: DEDB
DEDBs are designed to provide access to and efficient storage for large volumes of
data. The primary requirement a DEDB satisfies is a high level of data availability.

DEDB Characteristics: DEDBs are hierarchic databases that can have as many as
15 hierarchic levels, and as many as 127 segment types. They can contain both
direct and sequential dependent segments. Because the sequential dependent
segments are stored in chronological order as they are committed to the database,
they are useful in journaling applications.

DEDBs support a subset of functions and options that are available for a HIDAM
or HDAM database. For example, a DEDB does not support indexed access
(neither primary index nor secondary index), or logically related segments.

An Overview of How DEDBs Work:

Diagnosis, Modification or Tuning Information

A DEDB can be partitioned into multiple areas, with each area containing a
different collection of database records. The data in a DEDB area is stored in a
VSAM data set. Root segments are stored in the root-addressable part of an area,
with direct dependents stored close to the roots for fast access. Direct dependents
that cannot be stored close to their roots are stored in the independent overflow
portion of the area. Sequential dependents are stored in the sequential dependent
portion at the end of the area so that they can be quickly inserted. Each area data
set can have up to seven copies, making the data easily available to application
programs.

End of Diagnosis, Modification or Tuning Information

Sequential Access
When you use a sequential access method, the segments in the database are stored
in hierarchic sequence, one after another, with no pointers.

IMS full-function has two sequential access methods. Like the direct access
methods, one has an index and the other does not:
v HSAM only processes root segments and dependent segments sequentially.
v HISAM processes data sequentially but has an index so that you can access

records directly. HISAM is primarily for sequentially processing dependents, and
directly processing database records.

Some of the general requirements that sequential access satisfies are:
v Fast sequential processing
v Direct processing of database records with HISAM

Analyzing Data Access

74 Application Programming: Design Guide



v Small IMS overhead on storage because sequential access methods relate
segments by adjacency rather than with pointers

The three disadvantages of using sequential access methods are:
v Sequential access methods give slower access to the right-most segments in the

hierarchy, because HSAM and HISAM must read through all other segments to
get to them.

v HISAM requires frequent reorganization to reclaim space from deleted segments
and to keep the logical records of a database record physically adjoined.

v You cannot update HSAM databases. You must create a new database to change
any of the data.

Sequential Processing Only: HSAM
HSAM is a hierarchic access method that can handle only sequential processing.
You can retrieve data from HSAM databases, but you cannot update any of the
data. The z/OS access methods that HSAM can use are QSAM and BSAM.

HSAM is ideal for the following situations:
v You are using the database to collect (but not update) data or statistics.
v You only plan to process the data sequentially.

HSAM Characteristics: HSAM stores database records in the sequence in which
you submit them. You can only process records and dependent segments
sequentially, which means the order in which you have loaded them. HSAM stores
dependent segments in hierarchic sequence.

An Overview of How HSAM Works:

Diagnosis, Modification or Tuning Information

HSAM databases are very simple databases. The data is stored in hierarchic
sequence, one segment after the other, and no pointers or indexes are used.

End of Diagnosis, Modification or Tuning Information

Primarily Sequential Processing: HISAM
HISAM is an access method that stores segments in hierarchic sequence with an
index to locate root segments. It also has an overflow data set. Store segments in a
logical record until you reach the end of the logical record. When you run out of
space on the logical record, but you still have more segments belonging to the
database record, you store the remaining segments in an overflow data set. The
access methods that HISAM can use are VSAM and OSAM.

HISAM is well-suited for:
v Direct access of record by root keys
v Sequential access of records
v Sequential access of dependent segments

The situations in which your processing has some of these characteristics but
where HISAM is not necessarily a good choice, occur when:
v You must access dependents directly.
v You have a high number of inserts and deletes.

Analyzing Data Access

Chapter 5. Gathering Requirements for Database Options 75



v Many of the database records exceed average size and must use the overflow
data set. The segments that overflow into the overflow data set require
additional I/O.

HISAM Characteristics: For database records, HISAM databases:
v Store records in key sequence
v Can locate a particular record with a key value by using the index

For dependent segments, HISAM databases:
v Start each HISAM database record in a new logical record in the primary data

set
v Store the remaining segments in one or more logical records in the overflow

data set if the database record does not fit in the primary data set

An Overview of How HISAM Works:

Diagnosis, Modification or Tuning Information

HISAM does not immediately reuse space. When you insert a new segment,
HISAM databases shift data to make room for the new segment, and this leaves
unused space after deletions. HISAM space is reclaimed when you reorganize a
HISAM database.

End of Diagnosis, Modification or Tuning Information

Accessing z/OS Files through IMS: GSAM
GSAM enables IMS batch application programs and BMPs to access a sequential
z/OS data set as a simple database. The z/OS access methods that GSAM can use
are BSAM and VSAM. A GSAM database is a z/OS data set record that is defined
as a database record. The record is handled as one unit; it contains no segments or
fields and the structure is not hierarchic. GSAM databases can be accessed by
z/OS, IMS, and CICS.

In a CICS environment, an application program can access a GSAM database from
either a Call DL/I (or EXEC DLI) batch or batch-oriented BMP program. A CICS
application cannot, however, use EXEC DLI to process GSAM databases; it must
use IMS calls.

You commonly use GSAM to send input to and receive output from batch-oriented
BMPs or batch programs. To process a GSAM database, an application program
issues calls similar to the ones it issues to process a full-function database. The
program can read data sequentially from a GSAM database, and it can send output
to a GSAM database.

GSAM is a sequential access method. You can only add records to an output
database sequentially.

Accessing IMS Data through z/OS: SHSAM and SHISAM
Two database access methods give you simple hierarchic databases that z/OS can
use as data sets, SHSAM and SHISAM.

These access methods can be particularly helpful when you are converting data
from z/OS files to an IMS database. SHISAM is indexed and SHSAM is not.

Analyzing Data Access

76 Application Programming: Design Guide



When you use these access methods, you define an entire database record as one
segment. The segment does not contain any IMS control information or pointers;
the data format is the same as it is in z/OS data sets. The z/OS access methods
that SHSAM can use are BSAM and QSAM. SHISAM uses VSAM.

SHSAM and SHISAM databases can be accessed by z/OS access methods without
IMS, which is useful during transitions.

Understanding How Data Structure Conflicts Are Resolved
The order in which application programs need to process fields and segments
within hierarchies is frequently not the same for each application. When the DBA
finds a conflict in the way that two or more programs need to access the data,
three options are available to solve these problems. Each of the following options
solves a different kind of conflict.
v When an application program does not need access to all the fields in a segment,

or if the program needs to access them in a different order, the DBA can use
field level sensitivity for that program. Field-level sensitivity makes it possible for
an application program to access only a subset of the fields that a segment
contains, or for an application program to process a segment's fields in an order
that is different from their order in the segment.

v When an application program needs to access a particular segment by a field
other than the segment's key field, the DBA can use a secondary index for that
database.

v When the application program needs to relate segments from different
hierarchies, the DBA can use logical relationships. Using logical relationships
can give the application program a logical hierarchy that includes segments from
several hierarchies.

The following topics provide additional information:
v “Using Different Fields: Field-Level Sensitivity”
v “Resolving Processing Conflicts in a Hierarchy: Secondary Indexing” on page 78
v “Creating a New Hierarchy: Logical Relationships” on page 82

Using Different Fields: Field-Level Sensitivity
Field-level sensitivity applies the same kind of security for fields within a segment
that segment sensitivity does for segments within a hierarchy: An application
program can access only those fields within a segment, and those segments within
a hierarchy to which it is sensitive.

Field-level sensitivity also makes it possible for an application program to use a
subset of the fields that make up a segment, or to use all the fields in the segment
but in a different order. If a segment contains fields that the application program
does not need to process, using field-level sensitivity enables the program not to
process them.

Example of Field-Level Sensitivity
Suppose that a segment containing data about an employee contains the fields
shown in Table 16 on page 78. These fields are:
v Employee number: EMPNO
v Employee name: EMPNAME
v Birthdate: BIRTHDAY
v Salary: SALARY

Analyzing Data Access

Chapter 5. Gathering Requirements for Database Options 77



v Address: ADDRESS

Table 16. Physical Employee Segment

EMPNO EMPNAME BIRTHDAY SALARY ADDRESS

A program that printed mailing labels for employees' checks each week would not
need all the data in the segment. If the DBA decided to use field-level sensitivity
for that application, the program would receive only the fields it needed in its I/O
area. The I/O area would contain the EMPNAME and ADDRESS fields. Table 17
shows what the program's I/O area would contain.

Table 17. Employee Segment with Field-Level Sensitivity

EMPNAME ADDRESS

Field-level sensitivity makes it possible for a program to receive a subset of the
fields that make up a segment, the same fields but in a different order, or both.

Another situation in which field-level sensitivity is very useful is when new uses
of the database involve adding new fields of data to an existing segment. In this
situation, you want to avoid recoding programs that use the current segment. By
using field-level sensitivity, the old programs can see only the fields that were in
the original segment. The new program can see both the old and the new fields.

Specifying Field-Level Sensitivity
You specify field-level sensitivity in the PSB for the application program by using a
sensitive field (SENFLD) statement for each field to which you want the
application program to be sensitive.

Resolving Processing Conflicts in a Hierarchy: Secondary
Indexing

Sometimes a database hierarchy does not meet all the processing requirements of
the application programs that will process it. Secondary indexing can be used to
solve two kinds of processing conflicts:
v When an application program needs to retrieve a segment in a sequence other

than the one that has been defined by the segment's key field
v When an application program needs to retrieve a segment based on a condition

that is found in a dependent of that segment

To understand these conflicts and how secondary indexing can resolve them,
consider the examples of two application programs that process the patient
hierarchy, shown in Figure 18 on page 79. Three segment types in this hierarchy
are:
v PATIENT contains three fields: the patient's identification number, name, and

address. The patient number field is the key field.
v ILLNESS contains two fields: the date of the illness and the name of the illness.

The date of the illness is the key field.
v TREATMNT contains four fields: the date the medication was given; the name of

the medication; the quantity of the medication that was given; and the name of
the doctor who prescribed the medication. The date that the medication was
given is the key field.

Understanding Data Structure Conflicts

78 Application Programming: Design Guide

||

|||||
|

||

||
|



Retrieving Segments Based on a Different Key
When an application program retrieves a segment from the database, the program
identifies the segment by the segment's key field. But sometimes an application
program needs to retrieve a segment in a sequence other than the one that has
been defined by the segment's key field. Secondary indexing makes this possible.

Note: A new database type, the Partitioned Secondary Index (PSINDEX), is
supported by the High Availability Large Database (HALDB). PSINDEX is the
partitioned version of the secondary index database type. The corresponding
descriptions of the secondary index database type therefore apply to PSINDEX in
these sections .

Example: Suppose you have an online application program that processes requests
about whether an individual has ever been to the clinic. If you are not sure
whether the person has ever been to the clinic, you will not be able to supply the
identification number for the person. But the key field of the PATIENT segment is
the patient's identification number.

Segment occurrences of a segment type (for example, the segments for each of the
patients) are stored in a database in order of their keys (in this case, by their
patient identification numbers). If you issue a request for a PATIENT segment and
identify the segment you want by the patient's name instead of the patient's
identification number, IMS must search through all of the PATIENT segments to
find the PATIENT segment you have requested. IMS does not know where a
particular PATIENT segment is just by having the patient's name.

To make it possible for this application program to retrieve PATIENT segments in
the sequence of patients' names (rather than in the sequence of patients'
identification numbers), you can index the PATIENT segment on the patient name
field and store the index entries in a separate database. The separate database is
called a secondary index database.

Then, if you indicate to IMS that it is to process the PATIENT segments in the
patient hierarchy in the sequence of the index entries in the secondary index
database, IMS can locate a PATIENT segment if you supply the patient's name.
IMS goes directly to the secondary index and locates the PATIENT index entry
with the name you have supplied; the PATIENT index entries are in alphabetical

Figure 18. Patient Hierarchy

Understanding Data Structure Conflicts

Chapter 5. Gathering Requirements for Database Options 79



order of the patient names. The index entry is a pointer to the PATIENT segment
in the patient hierarchy. IMS can determine whether a PATIENT segment for the
name you have supplied exists, and then it can return the segment to the
application program if the segment exists. If the requested segment does not exist,
IMS indicates this to the application program by returning a not-found status code.

Related Reading: For more information on HALDB, see IMS Version 9:
Administration Guide: Database Manager.

Definitions: Three terms involved in secondary indexing are:
v The pointer segment is the index entry in the secondary index database that IMS

uses to find the segment you have requested. In the previous example, the
pointer segment is the index entry in the secondary index database that points
to the PATIENT segment in the patient hierarchy.

v The source segment is the segment that contains the field that you are indexing.
In the previous example, the source segment is the PATIENT segment in the
patient hierarchy, because you are indexing on the name field in the PATIENT
segment.

v The target segment is the segment in the database that you are processing to
which the secondary index points; it is the segment that you want to retrieve.

In the previous example, the target segment and the source segment are the same
segment—the PATIENT segment in the patient hierarchy. When the source segment
and the target segment are different segments, secondary indexing solves the
processing conflict.

The PATIENT segment that IMS returns to the application program's I/O area
looks the same as it would if secondary indexing had not been used.

The key feedback area is different. When IMS retrieves a segment without using a
secondary index, IMS places the concatenated key of the retrieved segment in the
key feedback area. The concatenated key contains all the keys of the segment's
parents, in order of their positions in the hierarchy. The key of the root segment is
first, followed by the key of the segment on the second level in the hierarchy, then
the third, and so on—with the key of the retrieved segment last.

But when you retrieve a segment from an indexed database, the contents of the
key feedback area after the request are a little different. Instead of placing the key
of the root segment in the left-most bytes of the key feedback area, DL/I places the
key of the pointer segment there. Note that the term “key of the pointer segment,”
as used here, refers to the key as perceived by the application program—that is,
the key does not include subsequence fields.

Example: Suppose index segment A shown in Figure 19 on page 81 is indexed on a
field in segment C. Segment A is the target segment, and segment C is the source
segment.

Understanding Data Structure Conflicts

80 Application Programming: Design Guide



When you use the secondary index to retrieve one of the segments in this
hierarchy, the key feedback area contains one of the following:
v If you retrieve segment A, the key feedback area contains the key of the pointer

segment from the secondary index.
v If you retrieve segment B, the key feedback area contains the key of the pointer

segment, concatenated with the key of segment B.
v If you retrieve segment C, the key of the pointer segment, the key of segment B,

and the key of segment C are concatenated in the key feedback area.

Although this example creates a secondary index for the root segment, you can
index dependent segments as well. If you do this, you create an inverted structure:
the segment you index becomes the root segment, and its parent becomes a
dependent.

Example: Suppose you index segment B on a field in segment C. In this case,
segment B is the target segment, and segment C is the source field. Figure 20
shows the physical database structure and the structure that is created by the
secondary index.

When you retrieve the segments in the secondary index data structure on the right,
IMS returns the following to the key feedback area:
v If you retrieve segment B, the key feedback area contains the key of the pointer

segment in the secondary index database.
v If you retrieve segment A, the key feedback area contains the key of the pointer

segment, concatenated with the key of segment A.
v If you retrieve segment C, the key feedback area contains the key of the pointer

segment, concatenated with the key of segment C.

Figure 19. Indexing a Root Segment

Figure 20. Indexing a Dependent Segment

Understanding Data Structure Conflicts

Chapter 5. Gathering Requirements for Database Options 81



Retrieving Segments Based on a Dependent's Qualification
Sometimes an application program needs to retrieve a segment, but only if one of
the segment's dependents meet a certain qualification.

Example: Suppose that the medical clinic wants to print a monthly report of the
patients who have visited the clinic during that month. If the application program
that processes this request does not use a secondary index, the program has to
retrieve each PATIENT segment, and then retrieve the ILLNESS segment for each
PATIENT segment. The program tests the date in the ILLNESS segment to
determine whether the patient has visited the clinic during the current month, and
prints the patient's name if the answer is yes. The program continues retrieving
PATIENT segments and ILLNESS segments until it has retrieved all the PATIENT
segments.

But with a secondary index, you can make the processing of the program simpler.
To do this, you index the PATIENT segment on the date field in the ILLNESS
segment. When you define the PATIENT segment in the DBD, you give IMS the
name of the field on which you are indexing the PATIENT segment, and the name
of the segment that contains the index field. The application program can then
request a PATIENT segment and qualify the request with the date in the ILLNESS
segment. The PATIENT segment that is returned to the application program looks
just as it would if you were not using a secondary index.

In this example, the PATIENT segment is the target segment; it is the segment that
you want to retrieve. The ILLNESS segment is the source segment; it contains the
information that you want to use to qualify your request for PATIENT segments.
The index segment in the secondary database is the pointer segment. It points to
the PATIENT segments.

Creating a New Hierarchy: Logical Relationships
When an application program needs to associate segments from different
hierarchies, logical relationships can make that possible. Logical relationships can
solve the following conflicts:
v When two application programs need to process the same segment, but they

need to access the segment through different hierarchies
v When a segment's parent in one application program's hierarchy acts as that

segment's child in another application program

Accessing a Segment through Different Paths

Sometimes an application program needs to process the data in a different order
than the way it is arranged in the hierarchy.

Example: An application program that processes data in a purchasing database
also requires access to a segment in a patient database:
v Program A processes information in the patient database about the patients at a

medical clinic: the patients' illnesses and their treatments.
v Program B is an inventory program that processes information in the purchasing

database about the medications that the clinic uses: the item, the vendor,
information about each shipment, and information about when and under what
circumstances each medication is given.

Understanding Data Structure Conflicts

82 Application Programming: Design Guide



Figure 21 shows the hierarchies that Program A and Program B require for their
processing. Their processing requirements conflict: they both need to have access to
the information that is contained in the TREATMNT segment in the patient
database. This information is:
v The date that a particular medication was given
v The name of the medication
v The quantity of the medication given
v The doctor that prescribed the medication

To Program B this is not information about a patient's treatment; it is information
about the disbursement of a medication. To the purchasing database, this is the
disbursement segment (DISBURSE).

Figure 21 shows the hierarchies for Program A and Program B. Program A needs
the PATIENT segment, the ILLNESS segment, and the TREATMNT segment.
Program B needs the ITEM segment, the VENDOR segment, the SHIPMENT
segment, and the DISBURSE segment. The TREATMNT segment and the
DISBURSE segment contain the same information.

Instead of storing this information in both hierarchies, you can use a logical
relationship. A logical relationship solves the problem by storing a pointer from
where the segment is needed in one hierarchy to where the segment exists in the
other hierarchy. In this case, you can have a pointer in the DISBURSE segment to
the TREATMNT segment in the medical database. When IMS receives a request for
information in a DISBURSE segment in the purchasing database, IMS goes to the
TREATMNT segment in the medical database that is pointed to by the DISBURSE
segment. Figure 22 on page 84 shows the physical hierarchy that Program A would
process and the logical hierarchy that Program B would process. DISBURSE is a
pointer segment to the TREATMNT segment in Program A's hierarchy.

Figure 21. Patient and Inventory Hierarchies

Understanding Data Structure Conflicts

Chapter 5. Gathering Requirements for Database Options 83



To define a logical relationship between segments in different hierarchies, you use
a logical DBD. A logical DBD defines a hierarchy that does not exist in storage, but
can be processed as though it does. Program B would use the logical structure
shown in Figure 22 as though it were a physical structure.

Inverting a Parent-Child Relationship
Another type of conflict that logical relationships can resolve occurs when a
segment's parent in one application program acts as that segment's child in another
application program:
v The inventory program, Program B, needs to process information about

medications using the medication as the root segment.
v A purchasing application program, Program C, processes information about

which vendors have sold which medications. Program C needs to process this
information using the vendor as the root segment.

Figure 23 shows the hierarchies for each of these application programs.

Figure 22. Logical Relationships Example

Figure 23. Supplies and Purchasing Hierarchies

Understanding Data Structure Conflicts

84 Application Programming: Design Guide



Logical relationships can solve this problem by using pointers. Using pointers in
this example would mean that the ITEM segment in the purchasing database
would contain a pointer to the actual data stored in the ITEM segment in the
supplies database. The VENDOR segment, on the other hand, would actually be
stored in the purchasing database. The VENDOR segment in the supplies database
would point to the VENDOR segment that is stored in the purchasing database.

Figure 24 shows the hierarchies of these two programs.

If you did not use logical relationships in this situation, you would:
v Keep the same data in both paths, which means that you would be keeping

redundant data.
v Have the same disadvantages as separate files of data:

– You would need to update multiple segments each time one piece of data
changed.

– You would need more storage.

Providing Data Security
If you find that some of the data in your application has a security requirement, an
IMS application can provide security for that data in two ways:
v Data sensitivity is a way of controlling what data a particular program can

access.
v Processing options are a way of controlling how a particular program can

process data that it can access.

The following topics provide additional information:
v “Providing Data Availability”
v “Keeping a Program from Accessing the Data: Data Sensitivity” on page 86
v “Preventing a Program from Updating Data: Processing Options” on page 88

Providing Data Availability
Specifying segment sensitivity and processing options also affects data availability.
You should set the specifications so that the PCBs request the fewest SENSEGS and
limit the possible processing options. With data availability, a program can
continue to access and update segments in the database successfully, even though
some parts of the database are unavailable.

The SENSEG statement defines a segment type in the database to which the
application program is sensitive. A separate SENSEG statement must exist for each

Figure 24. Program B and Program C Hierarchies

Understanding Data Structure Conflicts

Chapter 5. Gathering Requirements for Database Options 85



segment type. The segments can physically exist in one database or they can be
derived from several physical databases. If an application program is sensitive to a
segment that is below the root segment, it must also be sensitive to all segments in
the path from the root segment to the sensitive segment.

Related Reading: For more information on using field-level sensitivity for data
security and using the SENSEG statement to limit the scope of the PCBs, see IMS
Version 9: Administration Guide: Database Manager.

Keeping a Program from Accessing the Data: Data Sensitivity
An IMS program can only access data to which it is sensitive. You can control the
data to which your program is sensitive on three levels:
v Segment sensitivity can prevent an application program from accessing all the

segments in a particular hierarchy. Segment sensitivity tells IMS which segments
in a hierarchy the program is allowed to access.

v Field-level sensitivity can keep a program from accessing all the fields that
make up a particular segment. Field-level sensitivity tells IMS which fields
within a particular segment a program is allowed to access.

v Key sensitivity means that the program can access segments below a particular
segment, but it cannot access the particular segment. IMS returns only the key of
this type of segment to the program.

You define each of these levels of sensitivity in the PSB for the application
program. Key sensitivity is defined in the processing option for the segment.
Processing options indicate to IMS exactly what a particular program may or may
not do to the data. You specify a processing option for each hierarchy that the
application program processes; you do this in the DB PCB that represents each
hierarchy. You can specify one processing option for all the segments in the
hierarchy, or you can specify different processing options for different segments
within the hierarchy.

Segment sensitivity and field-level sensitivity are defined using special statements
in the PSB.

Segment Sensitivity
You define what segments an application program is sensitive to in the DB PCB for
the hierarchy that contains those segments.

Example: Suppose that the patient hierarchy shown in Figure 18 on page 79
belongs to the medical database shown in Figure 25. The patient hierarchy is like a
subset of the medical database.

Figure 25. Medical Database Hierarchy

Providing Data Security

86 Application Programming: Design Guide



PATIENT is the root segment and the parent of the three segments below it:
ILLNESS, BILLING, and HOUSHOLD. Below ILLNESS is TREATMNT. Below
BILLING is PAYMENT.

To make it possible for an application program to view only the segments
PATIENT, ILLNESS, and TREATMNT from the medical database, you specify in
the DB PCB that the hierarchy you are defining has these three segment types, and
that they are from the medical database. You define the database hierarchy in the
DBD; you define the application program's view of the database hierarchy in the
DB PCB.

Field-Level Sensitivity
In addition to providing data independence for an application program, field-level
sensitivity can also act as a security mechanism for the data that the program uses.

If a program needs to access some of the fields in a segment, but one or two of the
fields that the program does not need to access are confidential, you can use
field-level sensitivity. If you define that segment for the application program as
containing only the fields that are not confidential, you prevent the program from
accessing the confidential fields. Field-level sensitivity acts as a mask for the fields
to which you want to restrict access.

Key Sensitivity
To access a segment, an application program must be sensitive to all segments at a
higher level in the segment's path. In other words, in Figure 26, a program must be
sensitive to segment B in order to access segment C.

Example: Suppose that an application program needs segment C to do its
processing. But if segment B contains confidential information (such as an
employee's salary), the program is not able to access that segment. Using key
sensitivity lets you withhold segment B from the application program while giving
the program access to the dependents of segment B.

When a sensitive segment statement has a processing option of K specified for it,
the program cannot access that segment, but the program can pass beyond that
segment to access the segment's dependents. When the program does access the
segment's dependents, IMS does not return that segment; IMS returns only the
segment's key with the keys of the other segments that are accessed.

Figure 26. Sample Hierarchy for Key Sensitivity Example

Providing Data Security

Chapter 5. Gathering Requirements for Database Options 87



Preventing a Program from Updating Data: Processing
Options

During PCB generation, you can use five options of the PROCOPT parameter (in
the DATABASE macro) to indicate to IMS whether your program can read
segments in the hierarchy, or whether it can also update segments. From most
restrictive to least restrictive, these options are:

G Your program can read segments.

R Your program can read and replace segments.

I Your program can insert segments.

D Your program can read and delete segments.

A Your program can perform all the processing options. It is equivalent to
specifying G, R, I, and D.

Related Reading: For a thorough description of the processing options see, IMS
Version 9: Utilities Reference: System.

Processing options provide data security because they limit what a program can do
to the hierarchy or to a particular segment. Specifying only the processing options
the program requires ensures that the program cannot update any data it is not
supposed to. For example, if a program does not need to delete segments from a
database, the D option need not be specified.

When an application program retrieves a segment and has any of the
just-described processing options, IMS locks the database record for that
application. If PROCOPT=G is specified, other programs with the option can
concurrently access the database record. If an update processing option (R, I, D, or
A) is specified, no other program can concurrently access the same database
record. If no updates are performed, the lock is released when the application
moves to another database record or, in the case of HDAM, to another anchor
point.

The following locking protocol allows IMS to make this determination. If the root
segment is updated, the root lock is held at update level until commit. If a
dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program enters
the database record and obtains the lock at either read or update level, the lock
manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

When using block-level or database-level data sharing for online and batch
programs, you can use additional processing options.

Related Reading:
v For a special case involving HISAM delete byte with parameter ERASE=YES see,

IMS Version 9: Administration Guide: Database Manager.
v For more information on database and block-level data sharing, see IMS Version

9: Administration Guide: System.

Providing Data Security

88 Application Programming: Design Guide

|
|



E option
With the E option, your program has exclusive access to the hierarchy or to the
segment you use it with. The E option is used in conjunction with the options G, I,
D, R, and A. While the E program is running, other programs cannot access that
data, but may be able to access segments that are not in the E program's PCB. No
dynamic enqueue by program isolation is done, but dynamic logging of database
updates will be done.

GO option
When your program retrieves a segment with the GO option, IMS does not lock
the segment. While the read without integrity program reads the segment, it
remains available to other programs. This is because your program can only read
the data (termed read-only); it is not allowed to update the database. No dynamic
enqueue is done by program isolation for calls against this database. Serialization
between the program with PROCOPT=GO and any other update program does not
occur; updates to the same data occur simultaneously.

If a segment has been deleted and another segment of the same type has been
inserted in the same location, the segment data and all subsequent data that is
returned to the application may be from a different database record.

A read-without-integrity program can also retrieve a segment even if another
program is updating the segment. This means that the program need not wait for
segments that other programs are accessing. If a read-without-integrity program
reads data that is being updated by another program, and that program terminates
abnormally before reaching the next commit point, the updated segments might
contain invalid pointers. If an invalid pointer is detected, the read-without-integrity
program terminates abnormally, unless the N or T options were specified with GO.
Pointers are updated during insert, delete and backout functions.

N option
When you use the N option with GO to access a full-function database or a DEDB,
and the segment you are retrieving contains an invalid pointer, IMS returns a GG
status code to your program. Your program can then terminate processing,
continue processing by reading a different segment, or access the data using a
different path. The N option must be specified as PROCOPT=GON, GON, or
GONP.

T option
When you use the T option with GO and the segment you are retrieving contains
an invalid pointer, the response from an application program depends on whether
the program is accessing a full-function or Fast Path database.

For calls to full-function databases, the T option causes DL/I to automatically retry
the operation. You can retrieve the updated segment, but only if the updating
program has reached a commit point or has had its updates backed out since you
last tried to retrieve the segment. If the retry fails, a GG status code is returned to
your program.

For calls to Fast Path DEDBs, option T does not cause DL/I to retry the operation.
A GG status code is returned. The T option must be specified as PROCOPT=GOT,
GOT, or GOTP.

GOx and data integrity
For a very small set of applications and data, PROCOPT=GOx offers some
performance and parallelism benefits. However, it does not offer application data

Providing Data Security

Chapter 5. Gathering Requirements for Database Options 89

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|



integrity. For example, using PROCOPT=GOT in an online environment on a
full-function database can cause performance degradation. The T option forces a
re-read from DASD, negating the advantage of very large buffer pools and VSAM
hiperspace for all currently running applications and shared data. For more
information on the GOx processing option for DEDBs, see IMS Version 9: Utilities
Reference: System.

Read Without Integrity
Database-level sharing of IMS databases provides for sharing of databases between
a single update-capable batch or online IMS system and any number of other IMS
systems that are reading data that are without integrity.

A GE status code might be returned to a program using PROCOPT=GOx for a
segment that exists in a HIDAM database during CI splits.

In IMS, programs that use database-level sharing include PROCOPT=GOx in their
DBPCBs for that data. For batch jobs, the DBPCB PROCOPTs establish the batch
job's access level for the database. That is, a batch job uses the highest declared
intent for a database as the access level for DBRC database authorization. In an
online IMS environment, database ACCESS is specified on the DATABASE macro
during IMS system definition, and it can be changed using the /START DB
ACCESS=RO command. Online IMS systems schedule programs with data availability
determined by the PROCOPTs within those program PSBs being scheduled. That
data availability is therefore limited by the online system's database access.

The PROCOPT=GON and GOT options (described in “N option” on page 89 and
“T option” on page 89) provide certain limited PCB status code retry for some
recognizable pointer errors, within the data that is being read without integrity. In
some cases, dependent segment updates, occurring asynchronously to the
read-without-integrity IMS instance, do not interfere with the program that is
reading that data without integrity. However, update activity to an average
database does not always allow a read-without-integrity IMS system to recognize a
data problem.

What Read Without Integrity Means
Each IMS batch or online instance has OSAM and VSAM buffer pools defined for
it. Without locking to serialize concurrent updates that are occurring in another
IMS instance, a read without integrity from a database data set fetches a copy of a
block or CI into the buffer pool in storage. Blocks or CIs in the buffer pool can
remain there a long time. Subsequent read without integrity of other blocks or CIs
can then fetch more recent data. Data hierarchies and other data relationships
between these different blocks or CIs can be inconsistent.

For example, consider an index database (VSAM KSDS), which has an index
component and a data component. The index component contains only hierarchic
control information, relating to the data component CI where a given keyed record
is located. Think of this as the index component CI's way of maintaining the high
key in each data component CI. Inserting a keyed record into a KSDS data
component CI that is already full causes a CI split. That is, some portion of the
records in the existing CI are moved to a new CI, and the index component is
adjusted to point to the new CI.

Example: Suppose the index CI shows the high key in the first data CI as KEY100,
and a split occurs. The split moves keys KEY051 through KEY100 to a new CI; the

Providing Data Security

90 Application Programming: Design Guide



index CI now shows the high key in the first data CI as KEY050, and another entry
shows the high key in the new CI as KEY100.

A program that is reading is without integrity, which already read the “old” index
component CI into its buffer pool (high key KEY100), does not point to the newly
created data CI and does not attempt to access it. More specifically, keyed records
that exist in a KSDS at the time a read-without-integrity program starts might
never be seen. In this example, KEY051 through KEY100 are no longer in the first
data CI even though the “old” copy of the index CI in the buffer pool still
indicates that any existing keys up to KEY100 are in the first data CI.

Hypothetical cases also exist where the deletion of a dependent segment and the
insertion of that same segment type under a different root, placed in the same
physical location as the deleted segment, can cause simple Get Next processing to
give the appearance of only one root in the database. For example, accessing the
segments under the first root in the database down to a level-06 segment (which
had been deleted from the first root and is now logically under the last root)
would then reflect data from the other root. The next and subsequent Get Next
calls retrieve segments from the other root.

Read-only (PROCOPT=GO) processing does not provide data integrity.

Data Set Extensions
IMS instances with database-level sharing can open a database for read without
integrity. After the database is opened, another program that is updating that
database can make changes to the data. These changes might result in logical and
physical extensions to the database data set. Because the read-without-integrity
program is not aware of these extensions, problems with the RBA (beyond
end-of-data) can occur.

Read without Integrity

Chapter 5. Gathering Requirements for Database Options 91



Read without Integrity

92 Application Programming: Design Guide



Chapter 6. Gathering Requirements for Message Processing
Options

One of the tasks of application design is providing information about your
application's requirements to the people in charge of designing and administering
your IMS system. This chapter describes the information you should provide, and
why this information is important.

Restriction: This chapter applies to DB/DC and DCCTL environments only.

The following topics provide additional information:
v “Identifying Online Security Requirements”
v “Analyzing Screen and Message Formats” on page 95
v “Gathering Requirements for Conversational Processing” on page 98
v “Identifying Output Message Destinations” on page 101

Identifying Online Security Requirements
Security in an online system means protecting the data from unauthorized use via
terminals. It also means preventing unauthorized use of both the IMS system and
the application programs that access the database. For example, you do not want a
program that processes paychecks to be available to everyone who can access the
system.

The security mechanisms that IMS provides are signon, terminal, and password
security.

Related Reading: For an explanation of how to establish these types of security,
see IMS Version 9: Administration Guide: System.

Limiting Access to Specific Individuals: Signon Security
Signon security is available through Resource Access Control Facility (RACF®) or a
user-written security exit routine. With signon security, individuals who want to
use IMS must be defined to RACF or its equivalent before they are allowed access.

When a person signs on to IMS, RACF or security exits verify that the person is
authorized to use IMS before access to IMS-controlled resources is allowed. This
signon security is provided by the /SIGN ON command. You can also limit the
transaction codes and commands that individuals are allowed to enter. You do this
by associating an individual's user identification (USERID) with the transaction
codes and commands.

LU 6.2 transactions contain the USERID.

Related Reading: For more information on security, see IMS Version 9:
Administration Guide: Transaction Manager.

© Copyright IBM Corp. 1974, 2011 93



Limiting Access for Specific Terminals: Terminal Security
Use terminal security to limit the entry of a transaction code to a particular
terminal or group of terminals in the system. How you do this depends on how
many programs you want to protect.

To protect a particular program, you can either authorize a transaction code to be
entered from a list of logical terminals, or you can associate each logical terminal
with a list of the transaction codes that a user can enter from that logical terminal.
For example, you could protect the paycheck application program by defining the
transaction code associated with it as valid only when entered from the terminals
in the payroll department. If you wanted to restrict access to this application even
more, you could associate the paycheck transaction code with only one logical
terminal. To enter that transaction code, a user needs to be at a physical terminal
that is associated with that logical terminal.

Restriction: If you are using the shared-queues option, static control blocks
representing the resources needed for the security check need to be available in the
IMS system where the security check is being made. Otherwise, the security check
is bypassed.

Related Reading: For more information on shared queues, see IMS Version 9:
Administration Guide: Transaction Manager.

Limiting Access to the Program: Password Security
Another way you can protect the application program is to require a password
when a person enters the transaction code that is associated with the application
program you want to protect. If you use only password security, the person
entering a particular transaction code must also enter the password of the
transaction before IMS processes the transaction.

If you use password security with terminal security, you can restrict access to the
program even more. In the paycheck example, using password security and
terminal security means that you can restrict unauthorized individuals within the
payroll department from executing the program.

Restriction: Password security for transactions is only supported if the transactions
that are needed for the security check are defined in the IMS system where the
security check is being made. Otherwise, the security check is bypassed.

Allowing Access to Security Data: Authorization Security
RACF has a data set that you can use to store user-unique information. The AUTH
call gives application programs access to the RACF data set security data, and a
way to control access to application-defined resources. Thus, application programs
can obtain the security information about a particular user.

How IMS Security Relates to DB2 UDB for z/OS Security
An important part of DB2 UDB for z/OS security is the authorization ID. The
authorization ID that IMS uses for a program or a user at a terminal depends on
the kind of security that is used and the kind of program that is running. For
MPPs, IFPs, and transaction-oriented BMPs, the authorization ID depends on the
type of IMS security:
v If signon is required, IMS passes the USERID and group name that are

signed-on to DB2 UDB for z/OS.

Online Security Requirements

94 Application Programming: Design Guide



v If signon is not required, DB2 UDB for z/OS uses the name of the originating
logical terminal as the authorization ID.

For batch-oriented BMPs, the authorization ID is dependent on the value specified
for the BMPUSID= keyword in the DFSDCxxx PROCLIB member:
v If BMPUSID=USERID is specified, the value from the USER= keyword on the

JOB statement is used.
v If USER= is not specified on the JOB statement, the program's PSB name is used.
v If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the

program's PSB name is used.

Supplying Security Information
When you evaluate your application in terms of its security requirements, you
need to look at each program individually. When you have done this, you can
supply the following information to your security personnel.
v For programs that require signon security:

– List the individuals who should be able to access IMS.
v For programs that require terminal security:

– List the transaction codes that must be secured.
– List the terminals that should be allowed to enter each of these transaction

codes. If the terminals you are listing are already installed and being used,
identify the terminals by their logical terminal names. If not, identify them by
the department that will use them (for example, the accounting department).

v For programs that require password security:
– List the transaction codes that require passwords.

v For commands that require security:
– List the commands that require signon or password security.

Analyzing Screen and Message Formats
When an application program communicates with a terminal, an editing procedure
translates messages from the way they are entered at the terminal to the way the
program expects to receive and process them. The decisions about how IMS will
edit your program's messages are based on how your data should be presented to
the person at the terminal and to the application program. You need to describe
how you want data from the program to appear on the terminal screen, and how
you want data from the terminal to appear in the application program's I/O area.
(The I/O area contains the segments being processed by the application program.)

To supply information that will be helpful in these decisions, you should be
familiar with how IMS edits messages. IMS has two editing procedures:
v Message Format Service (MFS) uses control blocks that define what a message

should look like to the person at the terminal and to the application program.
v Basic edit is available to all IMS application programs. Basic edit removes

control characters from input messages and inserts the control characters you
specify in output messages to the terminal.

Related Reading: For information on defining IMS editing procedures and on
other design considerations for IMS networks, see IMS Version 9: Administration
Guide: Transaction Manager.

Online Security Requirements

Chapter 6. Gathering Requirements for Message Processing Options 95



An Overview of MFS
MFS uses four kinds of control blocks to format messages between an application
program and a terminal. The information you gather about how you want the data
formatted when it is passed between the application program and the terminal is
contained in these control blocks.

The two control blocks that describe input messages to IMS are:
v The device input format (DIF) describes to IMS what the input message is to

look like when it is entered at the terminal.
v The message input descriptor (MID) tells IMS how the application program

expects to receive the input message in its I/O area.

By using the DIF and the MID, IMS can translate the input message from the way
that it is entered at the terminal to the way it should appear in the program's I/O
area.

The two control blocks that describe output messages to IMS are:
v The message output descriptor (MOD) tells IMS what the output message is to

look like in the program's I/O area.
v The device output format (DOF) tells IMS how the message should appear on

the terminal.

To define the MFS control blocks for an application program, you need to know
how you want the data to appear at the terminal and in the application program's
I/O area for both input and output.

Related Reading: For more information about how you define this information to
MFS, see IMS Version 9: Application Programming: Transaction Manager.

An Overview of Basic Edit
Basic edit removes the control characters from an input message before the
application program receives it, and inserts the control characters you specify
when the application program sends a message back to the terminal. To format
output messages at a terminal using basic edit, you need to supply the necessary
control characters for the terminal you are using.

If your application will use basic edit, you should describe how you want the data
to be presented at the terminal, and what it is to look like in the program's I/O
area.

Editing Considerations in Your Application
Before you describe the editing requirements of your application, be sure that you
are aware of your standards concerning screen design. Make sure that the
requirements that you describe comply with those standards.

Provide the following information about your program's editing requirements:
v How you want the screen to be presented to the person at the terminal for the

person to enter the input data. For example, if an airline agent wants to reserve
seats on a particular flight, the screen that asks for this information might look
like this:

Screen and Message Formats

96 Application Programming: Design Guide



FLIGHT#:
NAME:
NO. IN PARTY:

v What the data should look like when the person at the terminal enters the input
message.

v What the input message should look like in the program's I/O area.
v What the data should look like when the program builds the output message in

its I/O area.
v How the output message should be formatted at the terminal.
v The length and type of data that your program and the terminal will be

exchanging.

The type of data you are processing is only one consideration when you analyze
how you want the data presented at the terminal. In addition, you should weigh
the needs of the person at the terminal (the human factors aspects in your
application) against the effect of the screen design on the efficiency of the
application program (the performance factors in the application program).
Unfortunately, sometimes a trade-off between human factors and performance
factors exists. A screen design that is easily understood and used by the person at
the terminal may not be the design that gives the application program its best
performance. Your first concern should be that you are following whatever are
your established screen standards.

A terminal screen that has been designed with human factors in mind is one that
puts the person at the terminal first; it is one that makes it as easy as possible for
that person to interact with IMS. Some of the things you can do to make it easy for
the person at the terminal to understand and respond to your application program
are:
v Display a small amount of data at one time.
v Use a format that is clear and uncluttered.
v Provide clear and simple instructions.
v Display one idea at a time.
v Require short responses from the person at the terminal.
v Provide some means for help and ease of correction for the person at the

terminal.

At the same time, you do not want the way in which a screen is designed to have
a negative effect on the application program's response time, or on the system's
performance. When you design a screen with performance first in mind, you want
to reduce the processing that IMS must do with each message. To do this, the
person at the terminal should be able to send a lot of data to the application
program in one screen so that IMS does not have to process additional messages.
And the program should not require two screens to give the person at the terminal
information that it could give on one screen.

When describing how the program should receive the data from the terminal, you
need to consider the program logic and the type of data you are working with.

Screen and Message Formats

Chapter 6. Gathering Requirements for Message Processing Options 97



Gathering Requirements for Conversational Processing
When you use conversational processing, the person at the terminal enters some
information, and an application program processes the information and responds
to the terminal. The person at the terminal then enters more information for an
application program to process. Each of these interactions between the person at
the terminal and the program is called a step in the conversation. Only MPPs can
be conversational programs; Fast Path programs and BMPs cannot be
conversational.

Definition: Conversational processing means that the person at the terminal can
communicate with the application program.

What Happens in a Conversation
During a conversation, the person at the terminal enters a request, receives the
information from IMS, and enters another request. Although it is not apparent to
the person at the terminal, a conversation can be processed by several application
programs or by one application program.

Definition: A conversation is a dialog between a person at a terminal and IMS
through one or more application programs.

For a program to continue a conversation, the program must have the necessary
information to continue processing. IMS stores data from one step of the
conversation to the next in a scratch-pad area (SPA). When a program continues
the conversation (the same program or a different one), IMS gives the program the
SPA (scratch pad area) for the conversation associated with that terminal.

In the preceding airline example, the first program might save the flight number
and the names of the people traveling, and then pass control to another application
program to reserve seats for those people on that flight. The first program saves
this information in the SPA. If the second application program did not have the
flight number and names of the people traveling, it would not be able to do its
processing.

Designing a Conversation
The first part of designing a conversation is to design the flow of the conversation.
If the requests from the person at the terminal are to be processed by only one
application program, you need only to design that program. If the conversation
should be processed by several application programs, you need to decide which
steps of the conversation each program is to process, and what each program is to
do when it has finished processing its step of the conversation.

When a person at a terminal enters a transaction code that has been defined as
conversational, IMS schedules the conversational program (for example, Program
A) associated with that transaction code. When Program A issues its first call to the
message queue, IMS returns the SPA that is defined for that transaction code to
Program A's I/O area. The person at the terminal must enter the transaction code
(and password, if one exists) only on the first input screen; the transaction code
need not be entered during each step of the conversation. IMS treats data in
subsequent screens as a continuation of the conversation started on the first screen.

After the program has retrieved the SPA, Program A can retrieve the input
message from the terminal. After it has processed the message, Program A can
either continue the conversation, or end it.

Requirements for Conversational Processing

98 Application Programming: Design Guide



To continue the conversation, Program A can do any of the following:
v Reply to the terminal that sent the message.
v Reply to the terminal and pass the conversation to another conversational

program, for example Program B. This is called a deferred program switch.
Definition: A deferred program switch means that Program A responds to the
terminal and then passes control to another conversational program, Program B.
After passing control to Program B, Program A is no longer part of the
conversation. The next input message that the person at the terminal enters goes
to Program B, although the person at the terminal is unaware that this message
is being sent to a second program.
Restriction: A deferred program switch is disallowed if the application is
involved in an inbound protected conversation. The application will receive an
X6 status code if it attempts to perform a deferred program switch in this
environment.

v Pass control of the conversation to another conversational program without first
responding to the originating terminal. This is called an immediate program switch.
Definition: An immediate program switch lets you pass control directly to
another conversational program without having to respond to the originating
terminal. When you do this, the program that you pass the conversation to must
respond to the person at the terminal. To continue the conversation, Program B
then has the same choices as Program A did: It can respond to the originating
terminal and keep control, or it can pass control in a deferred or immediate
program switch.
Restriction: An immediate program switch is disallowed if the application is
involved in an inbound protected conversation. The application will be abended
with a U711 if it attempts to perform an immediate program switch in this
environment.

To end the conversation, Program A can do either of the following:
v Move a blank to the first byte of the transaction code area of the SPA and then

return the SPA to IMS.
v Respond to the terminal and pass control to a nonconversational program. This

is also called a deferred program switch, but Program A ends the conversation
before passing control to another application program. The second application
program can be an MPP or a transaction-oriented BMP that processes
transactions from the conversational program.

Important Points about the SPA
When program A passes control of a conversation to program B, program B needs
to have the data that program A saved in the SPA in order to continue the
conversation. IMS gives the SPA for the transaction to program B when program B
issues its first message call.

The SPA is kept with the message. When the truncated data option is on, the size
of the retained SPA is the largest SPA of any transaction in the conversation.

Example: If the conversation starts with TRANA (SPA=100), and the program
switches to a TRANB (SPA=50), the input message for TRANB will contain a SPA
segment of 100 bytes. IMS adjusts the size of the SPA so that TRANB receives only
the first 50 bytes.

However, the IMS support that adjusts the size of the SPA does not exist in either
IMS Version 5 or earlier systems. If TRANB is to execute on a remote MSC system

Requirements for Conversational Processing

Chapter 6. Gathering Requirements for Message Processing Options 99



without this support, it will be passed a SPA of 100 bytes when it is only expecting
50 bytes. There are two ways to prevent this larger sized SPA from being sent to an
IMS Version 5 or earlier system:
1. You could define TRANB on the local IMS system with the RTRUNC parameter

on its TRANSACT macro, this forces the SPA to a size of 50 bytes when it is
inserted by TRANA.

2. If you never use truncated data nor want to change the TRANSACT macros for
remote transactions to specify RTRUNC, a specification is available to set the
system-wide default for the truncated data option. The specification is
TRUNC=Y|N in the DFSDCxxx PROCLIB member. You could set the system
default to not save truncated data, and the SPA would be automatically
truncated to a size of 50 bytes when it is inserted by TRANA.

Related Reading: For more information on how to structure a conversational
program, see IMS Version 9: Installation Volume 2: System Definition and Tailoring.

Recovery Considerations in Conversations
Because a conversation involves several steps and can involve several application
programs, consider the following items:
v One way you can make recovery easier is to design the conversation so that all

the database updates are done in the last step of the conversation. This way, if
the conversation terminates abnormally, IMS can back out all the updates
because they were all made during the same step of the conversation. Updating
the database during the last step of the conversation is also a good idea, because
the input from each step of the conversation is available.

v Although a conversation can terminate abnormally during any step of the
conversation, IMS backs out only the database updates and output messages
resulting during the last step of the conversation. IMS does not back out
database updates or cancel output messages for previous steps, even though
some of that processing might be inaccurate as a result of the abnormal
termination.

v Certain IMS system service calls can be helpful if the program determines that
some of its processing was invalid. These calls include ROLB, SETS, SETU, and
ROLS. The Roll Back call (ROLB) backs out all of the changes that the program has
made to the database. ROLB also cancels the output messages that the program
has created (except those sent with an express PCB) since the program's last
commit point.
The SETS, or SETU, and ROLS (with a token) calls work together to allow the
application program to set intermediate backout points within the call
processing of the program. The application program can set up to nine
intermediate backout points. Your program needs to use the SETS or SETU call to
specify a token for each point. A subsequent ROLS call, using the same token, can
back out all database changes and discard all nonexpress messages processed
since that SETS or SETU call.
Definition: A token is a 4-byte identifier.

v The program can use an express PCB to send a message to the person at the
terminal and to the master terminal operator. When the application program
inserts messages using an express PCB, IMS waits until it has the complete
message, rather than for the occurrence of a commit point, to transmit the
message to its destination. (In this context, “insert” refers to a situation in which
the application program sends the message and it is received by IMS; “transmit”
refers to a situation in which IMS begins sending the message to its destination.)
Therefore, when IMS has the complete message, it will be transmitted even if the

Requirements for Conversational Processing

100 Application Programming: Design Guide



program abnormally terminates. Messages sent with an express PCB are sent to
their final destinations even if the program terminates abnormally or issues a
ROLB call. For more information about the express PCB, refer to “To Other
Programs and Terminals.”

v To verify the accuracy of the previous processing, and to correct the processing
that is determined to be inaccurate, you can use the Conversational Abnormal
termination routine, DFSCONE0.
Related Reading: For more information on DFSCONE0, see IMS Version 9:
Customization Guide.

v You can write an MPP to examine the SPA, send a message notifying the person
at the terminal of the abnormal termination, make any necessary database calls,
and use a user-written or system-provided exit routine to schedule it.

Identifying Output Message Destinations
An application program can send messages to another application program or to
IMS terminals. To send output messages, the program issues a call and references
the I/O PCB or an alternate PCB. The I/O PCB and alternate PCBs represent
logical terminals and other application programs with which the application
program communicates.

Definition: An alternate PCB is a data communication program communication
block (DCPCB) that you define to describe output message destinations other than
the terminal that originated the input message.

The Originating Terminal
To send a message to the logical terminal that sent the input message, the program
uses an I/O PCB. IMS puts the name of the logical terminal that sent the message
in the I/O PCB when the program receives the message. As a result, the program
need not do anything to the I/O PCB before sending the message. If a program
receives a message from a batch-oriented BMP or CPI Communications driven
program, no logical terminal name is available to put into the I/O PCB. In these
cases, the logical terminal name field contains blanks.

To Other Programs and Terminals
When you want to send an output message to a terminal other than, or in addition
to, the terminal that sent the input message, you use an alternate PCB. You can set
the alternate PCB for a specific logical terminal when the program's PSB is
generated, or you can define the alternate PCB as being modifiable. A program can
change the destination of a modifiable alternate PCB while the program is running,
so you can send output messages to several alternate destinations.

The application program might need to respond to the originating terminal before
the person at the originating terminal can send any more messages. This might
occur when a terminal is in response mode or in conversational mode:
v Response mode can apply to a communication line, a terminal, or a transaction.

When response mode is in effect, IMS does not accept any input from the
communication line or terminal until the program has sent a response to the
previous input message. The originating terminal is unusable (for example, the
keyboard locks) until the program has processed the transaction and sent the
reply back to the terminal.
If a response-mode transaction is processed, including Fast Path transactions,
and the application does not insert a response back to the terminal through
either the I/O PCB or alternate I/O PCB, but inserts a message to an alternate

Requirements for Conversational Processing

Chapter 6. Gathering Requirements for Message Processing Options 101



PCB (program-to-program switch), the second or subsequent application
program must respond to the originating terminal and satisfy the response. IMS
will not take the terminal out of response mode.
If an application program terminates normally and does not issue an ISRT call to
the I/O PCB, alternate I/O PCB, or alternate PCB, IMS sends system message
DFS2082I to the originating terminal to satisfy the response for all
response-mode transactions, including Fast Path transactions.
You can define communication lines and terminals as operating in response
mode, not operating in response mode, or operating in response mode only if
processing a transaction that is been defined as response mode. You specify
response mode for communication lines and terminals on the TYPE and
TERMINAL macros, respectively, at IMS system definition. You can define any
transaction as a response-mode transaction; you do this on the TRANSACT
macro at IMS system definition. Response mode is in effect if:
– The communication line has been defined as being in response mode.
– The terminal has been defined as being in response mode.
– The transaction code has been defined as response mode.

v Conversational mode applies to a transaction. When a program is processing a
conversational transaction, the program must respond to the originating terminal
after each input message it receives from the terminal.

In these processing modes, the program must respond to the originating terminal.
But sometimes the originating terminal is a physical terminal that is made up of
two components—for example, a printer and a display. If the physical terminal is
made up of two components, each component has a different logical terminal
name. To send an output message to the printer part of the terminal, the program
must use a different logical terminal name than the one associated with the input
message; it must send the output message to an alternate destination. A special
kind of alternate PCB is available to programs in these situations; it is called an
alternate response PCB.

Definition: An alternate response PCB lets you send messages when exclusive,
response, or conversational mode is in effect. See the next section for more
information.

Alternate Response PCB
The destination of an alternate response PCB must be a logical terminal—you
cannot use an alternate response PCB to represent another application program.
When you use an alternate response PCB during response mode or conversational
mode, the logical terminal represented by the alternate response PCB must
represent the same physical terminal as the originating logical terminal.

In these processing modes, after receiving the message, the application program
must respond by issuing an ISRT call to one of the following:
v The I/O PCB.
v An alternate response PCB.
v An alternate PCB whose destination is another application program, that is, a

program-to-program switch.
v An alternate PCB whose destination is an ISC link. This is allowed only for

front-end switch messages.
Related Reading: For more information on front-end switch messages, see IMS
Version 9: Customization Guide.

Output Message Destinations

102 Application Programming: Design Guide



If one of these criteria is not met, message DFS2082I is sent to the terminal.

Express PCB
Consider specifying an alternate PCB as an express PCB. The express designation
relates to whether a message that the application program inserted is actually
transmitted to the destination if the program abnormally terminates or issues a
ROLL, ROLB, or ROLS call. For all PCBs, when a program abnormally terminates or
issues a ROLL, ROLB, or ROLS call, messages that were inserted but not made
available for transmission are cancelled while messages that were made available
for transmission are never cancelled.

Definition: An express PCB is an alternate response PCB that allows your program
to transmit the message to the destination terminal earlier than when you use a
nonexpress PCB.

For a nonexpress PCB, the message is not made available for transmission to its
destination until the program reaches a commit point. The commit point occurs
when the program terminates, issues a CHKP call, or requests the next input
message and when the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS has the complete message, it makes the message
available for transmission to the destination. In addition to occurring at a commit
point, it also occurs when the application program issues a PURG call using that
PCB or when it requests the next input message.

You should provide the answers to the following questions to the data
communications administrator to help in meeting your application's message
processing requirements:
v Will the program be required to respond to the terminal before the terminal can

enter another message?
v Will the program be responding only to the terminal that sends input messages?
v If the program needs to send messages to other terminals or programs as well, is

there only one alternate destination?
v What are the other terminals to which the program must send output messages?
v Should the program be able to send an output message before it terminates

abnormally?

Output Message Destinations

Chapter 6. Gathering Requirements for Message Processing Options 103



Output Message Destinations

104 Application Programming: Design Guide



Chapter 7. Designing an Application for APPC

Advanced Program-to-Program Communication (APPC) is IBM's preferred protocol
for program-to-program communication. Application programs can be distributed
throughout the network and communicate with each other in many hardware
architectures and software environments.

This chapter describes the APPC function of IMS TM.

The following topics provide additional information:
v “Overview of APPC and LU 6.2”
v “Application Program Types”
v “Application Objectives” on page 107
v “Choosing Conversation Attributes” on page 107
v “Conversation Type” on page 108
v “Conversation State” on page 109
v “Synchronization Level” on page 109
v “Distributed Sync Point” on page 110
v “Application Programming Interface for LU Type 6.2” on page 114
v “LU 6.2 Partner Program Design” on page 115

Related Reading: For more information on APPC, see:
v IMS Version 9: Application Programming: Transaction Manager, which includes

specific information on APPC such as the application programming interface
(API) and descriptions of the APSB and DPSB calls.

v IMS Version 9: Administration Guide: Transaction Manager, which includes an
overview of APPC for LU 6.2 devices and CPI Communications concepts.

Overview of APPC and LU 6.2
APPC allows application programs using APPC protocols to enter IMS transactions
from LU 6.2 devices. The LU 6.2 application program runs on an LU 6.2 device
supporting APPC.

APPC creates an environment that allows:
v Remote LU 6.2 devices to enter IMS local and remote transactions
v IMS application programs to insert transaction output to LU 6.2 devices with no

coding changes to existing application programs
v New application programs to make full use of LU 6.2 device facilities
v Data integrity provided by IMS and in LU 6.2 environments that do not have a

distributed sync-point function

Application Program Types
APPC/IMS is part of IMS TM that uses the CPI communications interface to
communicate with application programs. APPC/IMS supports the following types
of application programs for LU 6.2 processing:
v Standard DL/I

© Copyright IBM Corp. 1974, 2011 105



v Modified standard DL/I
v CPI Communications driven

Standard DL/I Application Program
A standard DL/I application program does not issue any CPI Communications
calls or establish any CPI-C conversations. This application program can
communicate with LU 6.2 products that replace other LU-type terminals using the
IMS API. A standard DL/I application program does not need to be modified,
recompiled, or link-edited, and it executes as it currently does.

Modified Standard DL/I Application Program
A modified standard DL/I application program is a standard DL/I online IMS TM
application program that uses both DL/I calls and CPI Communications calls. It
can be an MPP, BMP, or IFP that can access full-function databases, DEDBs,
MSDBs, and DB2 UDB for z/OS databases.

A modified standard DL/I application program uses CPI Communications (CPI-C)
calls to provide support for an LU 6.2 and non-LU 6.2 mixed network. The same
application program can be a standard DL/I on one execution, when the CPI
Communications ALLOCATE verb is not issued, and a modified standard DL/I on a
different execution when the CPI Communications ALLOCATE verb is issued.

A modified standard DL/I application program receives its messages using DL/I
GU calls to the I/O PCB and issues output responses using DL/I ISRT calls. CPI
Communications calls can also be used to allocate new conversations and to send
and receive data for them.

Related Reading: For a list of the CPI Communications calls, see Common
Programming Interface Communications Reference.

Use a modified standard DL/I application program when you want to use an
existing standard DL/I application program to establish a conversation with
another LU 6.2 device or the same network destination. The standard DL/I
application program is optionally modified and uses new functions, new
application and transaction definitions, and modified DL/I calls to initiate LU 6.2
application programs. Program calls and parameters are available to use the
IMS-provided implicit API and the CPI Communications explicit API.

CPI Communications Driven Program
A CPI Communications driven application program uses Commit and Backout calls,
and CPI Communications interface calls or LU 6.2 verbs for input and output
message processing. This application program uses the CPI Communications
explicit API, and can access full-function databases, DEDBs, MSDBs, and DB2 UDB
for z/OS databases. An LU 6.2 device can activate a CPI Communications driven
application program only by allocating a conversation.

Unlike a standard DL/I or modified standard DL/I application program, input
and output message processing for a CPI Communications driven program uses
APPC/MVS buffers and bypasses IMS message queueing. Because these
application programs do not use the IMS message queue, they can control their
own execution with the partner LU 6.2 system. An IMS APSB call enables you to
allocate a PSB for accessing IMS databases and alternate PCBs.

Application Program Types

106 Application Programming: Design Guide



The application program uses the Common Programming Interface Resource
Recovery (CPI-RR) SRRCMIT verb to initiate an IMS sync point and the CPI-RR
SRRBACK verb for backout. CPI Communications driven application programs use
the CPI-RR calls to initiate IMS sync point processing prior to program
termination.

A CPI Communications driven application program is able to:
v Access any type of database
v Receive and send large messages like the standard DL/I and modified standard

DL/I application programs
v Control the flow of input and output with CPI Communications calls
v Allocate multiple conversations with partner LU 6.2 devices
v Cause synchronization with conversation partners
v Use the IMS implicit API (for example, IMS queue services)
v Use IMS services (for example, sync point at program termination) regardless of

the API that is used

Application Objectives
Each application type has a different purpose, and its ease-of-use varies depending
on whether the program is a standard DL/I, modified standard DL/I, or a CPI
Communications driven application program. Table 18 on page 107 lists the
purpose and ease-of-use for each application type (standard DL/I, modified
standard DL/I, and PI-C driven). This information must be balanced with IMS
resource use.

Table 18. Using Application Programs in APPC

Purpose of
Application Program

Ease of Use

Standard DL/I
Program

Modified Standard
DL/I Program PI-C Driven Program

Inquiry Easy Neutral Very Difficult

Data Entry Easy Easy Difficult

Bulk Transfer Easy Easy Neutral

Cooperative Difficult Difficult Desirable

Distributed Difficult Neutral Desirable

High Integrity Neutral Neutral Desirable

Client Server Easy Neutral Very Difficult

Choosing Conversation Attributes
The LU 6.2 transaction program indicates how the transaction is to be processed by
IMS. Two processing modes are available: synchronous and asynchronous.

Synchronous Conversation
A conversation is synchronous if the partner waits for the response on the same
conversation used to send the input data.

Synchronous processing is requested by issuing the RECEIVE_AND_WAIT verb after
the SEND_DATA verb. Use this mode for IMS response-mode transactions and IMS
conversational-mode transactions.

Application Program Types

Chapter 7. Designing an Application for APPC 107



Example:
MC_ALLOCATE TPN(MYTXN)
MC_SEND_DATA ’THIS CAN BE A RESPONSE MODE’
MC_SEND_DATA ’OR CONVERSATIONAL MODE’
MC_SEND_DATA ’IMS TRANSACTION’
MC_RECEIVE_AND_WAIT

For examples of transaction flow, see “LU 6.2 Flow Diagrams” on page 115.

Asynchronous Conversation
A conversation is asynchronous if the partner program normally deallocates a
conversation after sending the input data. Output is sent to the TP name of
DFSASYNC.

Asynchronous processing is requested by issuing the DEALLOCATE verb after the
SEND_DATA verb. Use asynchronous processing for IMS commands, message
switches, and non-response, non-conversational transactions.

Example:
MC_ALLOCATE TPN(OTHERTXN)
MC_SEND_DATA ’THIS MUST BE A MESSAGE SWITCH, IMS COMMAND’
MC_SEND_DATA ’OR A NON-RESP NON-CONV TRANSACTION’
MC_DEALLOCATE

For examples of transaction flow, see “LU 6.2 Flow Diagrams” on page 115.

Asynchronous Output Delivery
Asynchronous output is held on the IMS message queue for delivery. When the
output is enqueued, IMS attempts to allocate a conversation to send this output. If
this fails, IMS holds the output for later delivery. This delivery can be initiated by
an operator command (/ALLOC), or by the enqueue of a new message for this LU
6.2 destination.

MSC Synchronous and Asynchronous Conversation
MSC remote application messages from both synchronous and asynchronous APPC
conversations can be queued on the multiple systems coupling (MSC) link. These
messages can then be sent across the MSC link to a remote IMS for processing.

For examples of transaction flow, see “LU 6.2 Flow Diagrams” on page 115.

Conversation Type
The APPC conversation type defines how data is passed on and retrieved from
APPC verbs. It is similar in concept to file blocking and affects both ends of the
conversation.

APPC supports two types of conversations:

Basic conversation
This low-conversation allows programs to exchange data in a standardized
format. This format is a stream of data containing 2-byte length fields
(referred to as LLs) that specify the amount of data to follow before the
next length field. The typical data pattern is:
LL, data, LL, data

Choosing Conversation Attributes

108 Application Programming: Design Guide



Each grouping of LL, data is referred to as a logical record. A basic
conversation is used to send multiple segments with one verb and to
receive maximum data with one verb.

Mapped conversation
This high-conversation allows programs to exchange arbitrary data records
in data formats approved by application programmers. One send verb
results in one receive verb, and z/OS and VTAM® handle the buffering.

Related Reading: For more information on basic and mapped conversations, see
v Systems Network Architecture: LU 6.2 Reference: Peer Protocols and
v Systems Network Architecture: Transaction Programmer's Reference Manual for LU

Type 6.2

Conversation State
CPI Communications uses conversation state to determine what the next set of
actions will be. Examples of conversation states are:

RESET The initial state before communications begin.

SEND The program can send or optionally receive.

RECEIVE The program must receive or abort.

CONFIRM The program must respond to a partner.

The basic rules for APPC verbs are:
v The program that initiates the conversation speaks first.
v Only one APPC verb can be outstanding at time.
v Programs take turns sending and receiving.
v The state of the conversation determines the verbs a program can issue.

Synchronization Level
The APPC synchronization level defines the protocol that is used when changing
conversation states. APPC and IMS support the following sync_level values:

NONE Specifies that the programs do not issue calls or recognize returned
parameters relating to synchronization.

CONFIRM Specifies that the programs can perform confirmation processing
on the conversation.

SYNCPT Specifies that the programs participate in coordinated commit
processing on resources that are updated during the conversation
under the RRS/MVS recovery platform. A conversation with this
level is also called a protected conversation.

Allocating a conversation with SYNCLVL=SYNCPT requires the Resource Recovery
Services (RRS/MVS) as the sync-point manager (SPM). RRS/MVS controls the
commitment of protected resources by coordinating the commit or backout request
with the participating owners of the updated resources, the resource managers.
IMS is the resource manager for DL/I, Fast Path data, and the IMS message
queues. The application program decides whether the data is to be committed or
aborted and communicates this decision to the SPM. The SPM then coordinates the
actions in support of this decision among the resource managers.

Conversation Type

Chapter 7. Designing an Application for APPC 109



Related Reading: For more information on SYNCLVL=SYNCPT, see IMS Version 9:
Administration Guide: Transaction Manager.

Distributed Sync Point
The Distributed Sync Point support enables IMS and remote application programs
(APPC or OTMA) to participate in protected conversations with coordinated
resource updates and recoveries. Before this support, IMS acted as the sync-point
manager. In this new scenario, z/OS manages the sync-point process on behalf of
the conversation participants: the application program and IMS (now acting as a
resource manager).

z/OS implements a system resource recovery platform, the Resource Recovery
Services/MVS (RRS/MVS). RRS/MVS supports the Common Programming
Interface - Resource Recovery (CPI-RR), an element of the SAA Common
Programming Interface that defines resource recovery and provides for the
coordinated management of resource recovery for both local and distributed
resources. In addition to RRS/MVS, a communications resource manager (called
APPC/PC for APPC/Protected Conversations) provides distribution of the
recovery.

In the APPC environment, a protected conversation is initiated when the
application program allocates an APPC conversation with SYNC_LEVEL=SYNCPT. Both
IMS and APPC are resource managers in this scenario. In the OTMA environment,
some additional code is required because OTMA is not a resource manager. The
additional code needed is an OTMA adapter, IBM supplied or equivalent. This
adapter indicates to IMS (in the OTMA message prefix) that this message is part of
a protected conversation, and thus IMS and the adapter are participants in the
coordinated commit process as managed by RRS/MVS.

Application programmers can now develop APPC application programs (local and
remote) and remote OTMA application programs that use RRS/MVS as the
sync-point manager, rather than IMS. This enhancement enables resources across
multiple platforms to be updated and recovered in a coordinated manner.

Distributed Sync Point Concepts
The Distributed Sync Point support entails:
v Changes in IMS that allow it to function as a resource manager under RRS/MVS
v Changes to the application program environment that support using applications

in protected conversations
v Changes to some commands that aid the user

Introduction to Resource Recovery
Most customers maintain computer resources that are essential to the survival of
their businesses. When these resources are updated in a controlled and
synchronized manner, they are said to be protected resources or recoverable
resources. These resources can all reside locally (on the same system) or be
distributed (across nodes in the network). The protocols and mechanisms for
regulating the updating of multiple protected resources in a consistent manner is
provided in z/OS with Resource Recovery Services/MVS (RRS/MVS).

Participants in Resource Recovery: As shown in Figure 27 on page 111 the
Resource Recovery environment is composed of three participants:
v Sync-point manager

Synchronization Level

110 Application Programming: Design Guide



v Resource managers
v Application program

RRS/MVS is the sync-point manager, also known as the coordinator. The
sync-point manager controls the commitment of protected resources by
coordinating the commit request (or backout request) with the resource managers,
the participating owners of the updated resources. These resource managers are
known as participants in the sync-point process. IMS participates as a resource
manager for DL/I, Fast Path, and DB2 UDB for z/OS data if this data has been
updated in such an environment.

The final participant in this resource recovery protocol is the application program,
the program accessing and updating protected resources. The application program
decides whether the data is to be committed or aborted and relates this decision to
the sync-point manager. The sync-point manager then coordinates the actions in
support of this decision among the resource managers.

Two-Phase Commit Protocol: As shown in Figure 28 on page 112, the two-phase
commit protocol is a process involving the sync-point manager and the resource
manager participants to ensure that of the updates made to a set of resources by a
third participant, the application program, either all updates occur or none. In
simple terms, the application program decides to commit its changes to some
resources; this commit is made to the sync-point manager that then polls all of the
resource managers as to the feasibility of the commit call. This is the prepare
phase, often called phase one. Each resource manager votes yes or no to the
commit.

After the sync-point manager has gathered all the votes, phase two begins. If all
votes are to commit the changes, then the phase two action is commit. Otherwise,
phase two becomes a backout. System failures, communication failures, resource
manager failures, or application failures are not barriers to the completion of the
two-phase commit process.

Figure 27. Participants in Resource Recovery

Distributed Sync Point

Chapter 7. Designing an Application for APPC 111



The work done by various resource managers is called a unit of recovery (UOR)
and spans the time from one consistent point of the work to another consistent
point, usually from one commit point to another. It is the unit of recovery that is
the object of the two-phase commit process.

Notes:

1. The application and IMS make a connection.
2. IMS expresses protected interest in the work started by the application. This

tells RRS/MVS that IMS will participate in the 2-phase commit process.
3. The application makes a read request to an IMS resource.
4. Control is returned to the application following its read request.
5. The application updates a protected resource.
6. Control is returned to the application following its update request.
7. The application requests that the update be made permanent via the

SRRCMIT call.
8. RRS/MVS calls IMS to do the prepare (phase 1) process.
9. IMS returns to RRS/MVS with its vote to commit.

10. RRS/MVS calls IMS to do the commit (phase 2) process.
11. IMS informs RRS/MVS that it has completed phase 2.
12. Control is returned to the application following its commit request.

Local Versus Distributed: The residence of the participants involved in the
recovery process determines whether that recovery is considered local or

Figure 28. Two-Phase Commit Process with One Resource Manager

Distributed Sync Point

112 Application Programming: Design Guide



distributed. In a local recovery scenario, all the participants reside on the same
single system. In a distributed recovery scenario, the participants are scattered
over multiple systems. Figure 29 shows the communication between Resource
Manager participants in a distributed resource recovery. There is no conceptual
difference between a local and distributed recovery in the functions provided by
RRS/MVS. However, to distribute the original sync-point manager's function to
involve remote sync-point managers, a special resource manager is required. The
APPC communications resource manager provides this support in the distributed
environment.

Summary of RRS/MVS Support
The objective of RRS/MVS is to provide a system resource recovery platform such
that applications executing on MVS can have access to local and distributed
resources and have system coordinated recovery management of these resources.
The support includes:
v A sync-point manager to coordinate the two-phase commit process
v Implementation of the SAA Commit and Backout callable services for use by

application programs
v A mechanism to associate resources with an application instance
v Services for resource manager registration and participation in the two-phase

commit process with RRS/MVS
v Services to allow resource managers to express interest in an application instance

and be informed of commit and backout requests
v Services to enable resource managers to obtain system data to restore their

resources to consistent state
v A communications resource manager (called APPC/PC for APPC/Protected

Conversations) so that distributed applications can coordinate their recovery
with participating local resource managers

Restriction:

v Extended Recovery Facility (XRF)
Running protected conversations in an IMS-XRF environment does not
guarantee that the alternate system can resume and resolve any unfinished work

Figure 29. Distributed Resource Recovery

Distributed Sync Point

Chapter 7. Designing an Application for APPC 113



started by the active system. This process is not guaranteed because a failed
resource manager must re-register with its original RRS system if the RRS is still
available when the resource manager restarts. Only if the RRS on the active
system is not available can an XRF alternate register with another RRS in the
sysplex and obtain the incomplete unit of recovery data of the failing active.
Recommendation: Because IMS retains indoubt units-of-recovery indefinitely
until they're resolved, a switch back to the original active system should be done
as soon as possible to pickup unit of recovery information to resolve and
complete all the work of the resource managers involved. If this is not possible,
the indoubt units-of-recovery can be resolved via commands.

v Remote Site Recovery (RSR)
Active systems tracked by a remote system in an RSR environment can
participate in protected conversations, although it will be necessary to resolve
indoubt units-of-recovery via commands if they should exist after a takeover to
a remote site has been done. This is because the remote site is probably not part
of the active sysplex and the new IMS cannot acquire unfinished
unit-of-recovery information from RRS. IMS provides commands to interrogate
protected conversation work and to resolve the unfinished unit-of-recovery if
necessary.

v Batch and Non-Message Driven BMPs in a DBCTL Environment
Distributed Sync Point does not support the IMS batch environment. In a
DBCTL environment, there are no inbound protected conversations possible.
However, a BMP in a DBCTL environment can allocate an outbound protected
conversation, which will be supported by Distributed Sync Point and RRS/MVS.

Impact on the Network
Network traffic will increase as a result of the conversation participants and the
sync-point manager communicating with each other.

Application Programming Interface for LU Type 6.2
IMS application programs can use the IMS implicit LU 6.2 API to access LU 6.2
devices. This API provides compatibility with non-LU 6.2 device types so that the
same application program can be used from both LU 6.2 and non-LU 6.2 devices.
The API adds to the APPC interface by supplying IMS-provided processing for the
application program. You can use the explicit CPI Communications interface for
APPC functions and facilities for new or rewritten IMS application programs.

Implicit API
The implicit API accesses an APPC conversation indirectly. This API uses the
standard DL/I calls (GU, ISRT, PURG) to send and receive data. It allows application
programs that are not specific to LU 6.2 protocols to use LU 6.2 devices. The API
uses new and changed DL/I calls (CHNG, INQY, SETO) to utilize LU 6.2. Using the
existing IMS application programming base, you can write LU 6.2-specific
applications using this API and not using the CPI Communications calls. Although
the implicit API uses only some of the LU 6.2 capabilities, it can be a useful
simplification for many applications. The implicit API also provides function
outside of LU 6.2, like message queueing and automatic asynchronous message
delivery.

IMS generates all CPI Communications calls under the implicit API. The
application interaction is strictly with the IMS message queue.

Distributed Sync Point

114 Application Programming: Design Guide



The remote LU 6.2 system must be able to handle the LU 6.2 flows. APPC/MVS
generates these flows from the CPI Communications calls issued by the IMS
application program using the implicit API. An IMS application program can use
the explicit API to issue the CPI Communications directly. This is useful with
remote LU 6.2 systems that have incomplete LU 6.2 implementations, or that are
incompatible with the IMS implicit API support. See the LU 6.2 data flow
examples under “LU 6.2 Partner Program Design.”

The existing API is extended so that:
v Asynchronous LU 6.2 output is created by using alternate PCBs that reference

LU 6.2 destinations. The DL/I CHNG call can supply parameters to specify an LU
6.2 destination. Default values are used for omitted parameters.

v An application program can retrieve the current conversation attributes such as
the conversation type (basic or mapped), the sync_level (NONE, CONFIRM, or
SYNCPT), and asynchronous or synchronous conversation.

v A terminal message switch can be used to and from LU 6.2 devices. See “LU 6.2
Partner Program Design” for a description of the message switch.

Explicit API
The explicit API (the CPI Communications API) can be used by any IMS
application program to access an APPC conversation directly. IMS resources are
available to the CPI Communications driven application program only if the
application issues the APSB (Allocate_ PSB) call. The CPI Communications driven
application program must use the CPI-RR SRRCMIT and SRRBACK verbs to initiate an
IMS sync point or backout, or if SYNCLVL=SYNCPT is specified, to communicate
the sync point decision to the RRS/MVS sync point manager.

Related Reading: For a description of the SRRCMIT and SRRBACK verbs, see SAA CPI
Resource Recovery Reference.

LU 6.2 Partner Program Design
The flow of a transaction that is sent from an LU 6.2 device differs, depending on
the conversation attributes and synchronization levels. Different results occur, and
the partner system takes actions accordingly. The flow diagrams and the integrity
tables in this section present these differences.

LU 6.2 Flow Diagrams
Figure 30 on page 116 through Figure 38 on page 122 show the flow between a
synchronous or asynchronous LU 6.2 application program and an IMS application
program in a single (local) IMS system.

Figure 39 on page 123 through Figure 42 on page 126 show the flow between a
synchronous or asynchronous LU 6.2 application program in a single (local) IMS
system and an IMS application program in a remote IMS system across a multiple
systems coupling (MSC) link.

Figure 43 on page 127 and Figure 44 on page 128 show commit scenarios with
SYNC_LEVEL=SYNCPT. Figure 45 on page 129 shows a backout scenario with
SYNC_LEVEL=SYNCPT.

Differences in buffering and encapsulation of control data with user data may
cause variations in the flows. The control data are the 3 returned fields from the
Receive APPC verb: Status_received, Data_received, and Request_to_send_received.

Interface for LU Type 6.2

Chapter 7. Designing an Application for APPC 115



Any variations based on these differences will not affect the function or use of the
flows.

Figure 31 on page 117 shows the flow of a local synchronous transaction when
Sync_level is Confirm.

Figure 30. Flow of a Local IMS Synchronous Transaction When Sync_level=None

LU 6.2 Partner Program Design

116 Application Programming: Design Guide



Figure 32 on page 118 shows the flow of a local asynchronous transaction when
Sync_level is None.

Figure 31. Flow of a Local IMS Synchronous Transaction When Sync_level=Confirm

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 117



Figure 33 on page 119 shows the flow of a local asynchronous transaction when
Sync_level is Confirm.

Figure 32. Flow of a Local IMS Asynchronous Transaction When Sync_level=None

LU 6.2 Partner Program Design

118 Application Programming: Design Guide



Figure 34 on page 120 shows the flow of a local conversational transaction When
Sync_level is None.

Figure 33. Flow of a Local IMS Asynchronous Transaction When Sync_level=Confirm

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 119



Figure 35 on page 121 shows the flow of a local IMS command when Sync_level is
None.

Figure 34. Flow of a Local IMS Conversational Transaction When Sync_level=None

LU 6.2 Partner Program Design

120 Application Programming: Design Guide



Figure 36 shows the flow of a local asynchronous command when Sync_level is
Confirm.

Figure 37 on page 122 shows the flow of a message switch When Sync_level is
None.

Figure 35. Flow of a Local IMS Command when Sync_level=None

Figure 36. Flow of a Local IMS Asynchronous Command When Sync_level=Confirm

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 121



Synchronous is used to verify that no error has occurred while processing
DFSAPPC. If an error occurred, the error message returns before DEALLOCATE.

Figure 38 shows the flow of a CPI-C driven program when Sync_level is None.

Figure 39 on page 123 shows the flow of a remote synchronous transaction when
Sync_level is None.

Figure 37. Flow of a Message Switch When Sync_level=None

Figure 38. Flow of a Local CPI Communications Driven Program When Sync_level=None

LU 6.2 Partner Program Design

122 Application Programming: Design Guide



Figure 40 on page 124 shows the flow of a remote asynchronous transaction when
Sync_level is None.

Figure 39. Flow of a Remote IMS Synchronous Transaction When Sync_level=None

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 123



Figure 41 on page 125 shows the flow of a remote asynchronous transaction when
Sync_level is Confirm.

Figure 40. Flow of a Remote IMS Asynchronous Transaction When Sync_level=None

LU 6.2 Partner Program Design

124 Application Programming: Design Guide



Figure 42 on page 126 shows the flow of a remote synchronous transaction when
Sync_level is Confirm.

Figure 41. Flow of a Remote IMS Asynchronous Transaction When Sync_level=Confirm

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 125



The scenarios shown in Figure 43 on page 127, Figure 44 on page 128, Figure 45 on
page 129, Figure 46 on page 130, and Figure 47 on page 131 provide examples of
the two-phase process for the supported application program types. The LU 6.2

Figure 42. Flow of a Remote IMS Synchronous Transaction When Sync_level=Confirm

LU 6.2 Partner Program Design

126 Application Programming: Design Guide



verbs are used to illustrate supported functions and interfaces between the
components. Only parameters pertinent to the examples are included. This does
not imply that other parameters are not supported.

Figure 43 shows a standard DL/I program commit scenario when Sync_Level is
Syncpt.

Notes:

�1�Sync_Level=Syncpt triggers a protected resource update.
�2�This application program inserts output for the remote application to
the IMS message queue.
�3� The GU initiates the transfer of the output.
�4� The remote application sends a Confirmed after receiving data
(output).
�5� IMS issues ATRCMIT (equivalent to SRRCMIT) to start the two-phase
process.

Figure 44 on page 128 shows a CPI-C driven commit scenario when Sync_Level is
Syncpt.

Figure 43. Standard DL/I Program Commit Scenario When Sync_level=Syncpt

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 127



Notes:

�1�Sync_Level=Syncpt triggers a protected resource update.
�2� The programs send and receive data.
�3� The remote application decides to commit the updates.
�4� The CPI-C program issues SRRCMIT to commit the changes.
�5� The commit return code is returned to the remote application.

Figure 45 on page 129 shows a standard DL/I program backout scenario when
Sync_Level is Syncpt.

Figure 44. CPI-C Driven Commit Scenario When Sync_Level=Syncpt

LU 6.2 Partner Program Design

128 Application Programming: Design Guide



Notes:

�1�Sync_Level=Syncpt triggers a protected-resource update.
�2� This application program inserts output for the remote application
to the IMS message queue.
�3� The GU initiates the transfer of the output.
�4� The remote application decides to back out any updates.
�5� IMS abends the application with a U119 to back out the application.
�6� The backout return code is returned to the remote application.

Figure 46 on page 130 shows a standard DL/I program backout scenario when
Sync_Level is Syncpt.

Figure 45. Standard DL/I Program U119 Backout Scenario When Sync_Level=Syncpt

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 129



Notes:

�1�Sync_Level=Syncpt triggers a protected-resource update.
�2� This application program inserts output for the remote application
to the IMS message queue.
�3� The GU initiates the transfer of the output.
�4� The remote application sends a Confirmed after receiving data
(output).
�5� IMS issues ATBRCVW on behalf of the DL/I application to wait
for a commit or backout.
�6� The remote application decides to back out any updates.
�7� IMS abends the application with U0711 to back out the application.
�8� The backout return code is returned to the remote application.

Figure 47 on page 131 shows a standard DL/I program ROLB scenario when
Sync_Level is Syncpt.

Figure 46. Standard DL/I Program U0711 Backout Scenario When Sync_Level=Syncpt

LU 6.2 Partner Program Design

130 Application Programming: Design Guide



Notes:

�1�Sync_Level=Syncpt triggers a protected-resource update.
�2� This application program inserts output for the remote application
to the IMS message queue.
�3� DL/I program issues a ROLB. ABENDU0711 with Return Code X’20’
is issued.

Figure 48 on page 132 shows multiple transactions in the same commit when
Sync_Level is Syncpt.

Figure 47. Standard DL/I Program ROLB Scenario When Sync_Level=Syncpt

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 131



Notes:

�1� An allocate with Sync_Level=Syncpt triggers a protected resource
update with Conversation 1.

Figure 48. Multiple Transactions in Same Commit When Sync_Level=Syncpt

LU 6.2 Partner Program Design

132 Application Programming: Design Guide



�2� The first transaction provides the output for Conversation 1.
�3� An allocate with Sync_Level=Syncpt triggers a protected resource
update with Conversation 2.
�4� The second transaction provides the output for Conversation 2.
�5� The remote application issues SRRCMIT to commit both
transactions.
�6� IMS issues ATRCMIT to start the two-phase process on behalf of each
DL/I application.

Integrity Tables
Table 19 shows the results, from the viewpoint of the IMS partner system, of
normal conversation completion, abnormal conversation completion due to a
session failure, and abnormal conversation completion due to non-session failures.
These results apply to asynchronous and synchronous conversations and both
input and output. This table also shows the outcome of the message, and the
action that the partner system takes when it detects the failure. An example of an
action, under “LU 6.2 Session Failure,” is a programmable work station (PWS)
resend.

Table 19. Message Integrity of Conversations

Conversation Attributes Normal LU 6.2 Session Failure1 Other Failure2

Synchronous
Sync_level=NONE

Input: Reliable
Output: Reliable

Input: PWS resend
Output: PWS resend

Input: Reliable
Output: Reliable

Synchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Synchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=NONE

Input: Ambiguous
Output: Reliable

Input: Undetectable
Output: Reliable

Input: Undetectable
Output: Reliable

Asynchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Notes:

1. A session failure is a network-connectivity breakage.

2. A non-session failure is any other kind of failure, such as invalid security
authorization.

3. IMS resends asynchronous output if CONFIRM is lost; therefore, the PWS must tolerate
duplicate output.

Table 20 on page 134 shows the specifics of the processing windows when integrity
is compromised (the message is either lost or its state is ambiguous). The table
indicates the relative probability of an occurrence of each window and whether
output is lost or duplicated.

A Sync_level value of NONE does not apply to asynchronous output, because IMS
always uses Sync_level=CONFIRM for such output.

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 133



Table 20. Results of Processing When Integrity Is Compromised

Conversation Attributes

State of Window1

before Accepting
Transaction

Probability of
Window State

Possible Action
while Sending
Response

Probability of Action
while Sending
Response

Synchronous
Sync_level=NONE

ALLOCATE to
PREPARE_TO_
RECEIVE return

Medium Can lose or send
duplicate output.

Medium

Synchronous
Sync_level=CONFIRM

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small CONFIRM to IMS
receipt. Can cause
duplicate output.

Small

Synchronous
Sync_level=SYNCPT

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small CONFIRM to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=NONE

Allocate to
Deallocate

High CONFIRMED to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=CONFIRM

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small2 CONFIRMED to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=SYNCPT

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small2 CONFIRMED to IMS
receipt. Can cause
duplicate output.

Notes:

1. The term window refers to a period of time when certain events can occur, such as the
consequences described in this table.

2. Can be recoverable.

Table 21 indicates how IMS recovers APPC transactions across IMS warm starts,
XRF takeovers, APPC session failures, and MSC link failures.

Table 21. Recovering APPC Messages

Message Type
IMS Warm Start
(NRE or ERE) XRF Takeover

APPC (LU 6.2)
Session Fail

MSC LINK
Failure

Local Recoverable Tran.,
Non Resp., Non Conversation
- APPC Sync. Conv. Mode
- APPC Async. Conv. Mode

Discarded (2)
Recovered

Discarded (4)
Recovered

Discarded (6)
Recovered (1)

N/A (9)
N/A (9)

Local Recoverable Tran.,
Conv. or Resp. mode
- APPC Sync. Conv. Mode
- APPC Async. Conv. Mode

Discarded (2)
N/A (8)

Discarded (4)
N/A (8)

Discarded (6)
N/A (8)

N/A (9)
N/A (8,9)

Local Non Recoverable Tran.,
- APPC Sync. Conv. Mode
- APPC Async. Conv. Mode

Discarded (2)
Discarded (2) Discarded (4)

Discarded (6)
Recovered (1)

N/A (9)
N/A (9)

Remote Recoverable Tran.,
Non Resp., Non Conv.
- APPC Sync. Conv. Mode
- APPC Async. Conv. Mode

Discarded (2,5)
Recovered

Discarded (3,5)
Recovered

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

LU 6.2 Partner Program Design

134 Application Programming: Design Guide



Table 21. Recovering APPC Messages (continued)

Message Type
IMS Warm Start
(NRE or ERE) XRF Takeover

APPC (LU 6.2)
Session Fail

MSC LINK
Failure

Remote Recoverable Tran.,
Conv. or Resp. mode
- APPC Sync. Conv. Mode
- APPC Async. Conv. Mode

Discarded (2,5)
N/A (8)

Discarded (3,5)
N/A (8)

Recovered (1)
N/A (8)

Recovered (7)
N/A (8)

Remote Non Recoverable Tran.,
- APPC Sync. Conv. Mode
- APPC Async. Conv. Mode

Discarded (2,5)
Discarded (2,5)

Discarded (3,5)
Discarded (3,5)

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Notes:

1. This recovery scenario assumes the message was enqueued before failure; otherwise, the message is discarded.

2. The message is discarded during IMS warm-start processing.

3. The message is discarded when the MSC link is restarted and when the message is taken off the queue (for
sending across the link).

4. The message is discarded when the message region is started and when the message is taken off the queue (for
processing by the application program).

5. For all remote MSC APPC transactions, if the message has already been sent across the MSC link to the remote
system when the failure occurs in the local IMS, the message is processed. After the message is processed by the
remote application program and a response message is sent back to the local system, it is enqueued to the
DFSASYNC TP name of the LU 6.2 device or program that submitted the original transaction.

6. At sync point, the User Message Control Error exit routine (DFSCMUX0) can prevent the transaction from being
aborted and the output message can be rerouted (recovered).

For more information about this exit routine, see IMS Version 9: Customization Guide.

7. The standard MSC Link recovery protocol recovers all messages that are queued or are in the process of being
sent across the MSC link when the link fails.

8. IMS conversational-mode and response-mode transactions cannot be submitted from APPC asynchronous
conversation sessions. APPC synchronous conversation-mode must be used.

9. MSC link failures do not affect local transactions.

DFSAPPC Message Switch
DFSAPPC is an LU 6.2 descriptor that provides an IMS system service. It allows
LU 6.2 application programs to send messages to the following:
v Application programs (transactions)
v IMS-managed local or remote LTERMs (message switches)
v LU name and TP name

Messages sent with the LTERM= option are directed to IMS-managed local or
remote LTERMs. Messages sent without the LTERM= option are sent to the
appropriate LU 6.2 application or IMS application program.

Because the LTERM can be an LU 6.2 descriptor name, the message is sent to the
LU 6.2 application program as if an LU 6.2 device had been explicitly selected.

With DFSAPPC, message delivery is asynchronous. If a message is allocated and
the allocate fails, the message is held on the IMS message queue until it can be
successfully delivered.

Example: In the LU 6.2 conversation example, an IMS application issues a
DFSAPPC message switch to its partner with the LU name FRED and TPN name
REPORT. REPI is the user data.

LU 6.2 Partner Program Design

Chapter 7. Designing an Application for APPC 135



DFSAPPC (TPN=REPORT LU=FRED) REP1

You can use a 17-byte network-qualified name in the LU= field.

Restriction: LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG
call in an LU 6.2 conversation. The LU 6.2 conversation can only be associated
with the IOPCB. The application sends a message on the existing LU 6.2
conversation (synchronous) or has IMS create a new conversation (asynchronous)
using the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation,
only the IOPCB represents the original LU 6.2 conversation.

Related Reading: For more information about DFSAPPC, see IMS Version 9:
Administration Guide: Transaction Manager.

LU 6.2 Partner Program Design

136 Application Programming: Design Guide



Chapter 8. Writing ODBA Application Programs

This chapter describes the Open Database Access (ODBA) callable interface to IMS
DB and presents information about how you write z/OS application programs that
use the interface. By using the ODBA interface, IMS DB databases can be accessed
from environments that are outside the scope of IMS's control, such as DB2 UDB
for z/OS stored procedures.

The following topics provide additional information:
v “General Application Program Flow” on page 138
v “Server Program Structure” on page 141
v “DB2 UDB for z/OS Stored Procedures Use of ODBA” on page 141

The ODBA interface is not needed within IMS-controlled regions, such as MPRs,
BMPs, or IFPs, for calls to locally-controlled databases.

The z/OS application programs (hereafter called the ODBA application programs)
run in a separate z/OS address space that IMS regards as a separate region from
the control region. The separate z/OS address space hereafter is called the z/OS
application region.

The ODBA interface gains access to IMS DB through the Database Resource
Adapter (DRA). The ODBA application programs (which can access any address
space within the z/OS they are running in) gain access to IMS DB databases
through the ODBA interface. Figure 49 illustrates this concept and shows the
relationship between the components of this environment.

One z/OS application region can connect to multiple IMS DBs and multiple z/OS
application regions can connect to a single IMS DB. The connection is similar to
that of CICS to DBCTL.

Related Reading: For a description of RRS and its uses, see IMS Version 9:
Administration Guide: Transaction Manager for information on the Distributed Sync
Point.

Figure 49. z/OS Application Region's Connection to IMS DB

© Copyright IBM Corp. 1974, 2011 137

|

|

|

|



General Application Program Flow
z/OS application programs issue DL/I calls using an application interface block
(AIB). No other interface is supported.

Restriction: The ODBA interface does not support calls into batch DL/I regions.

Several conditions must be met for the AIB call to succeed:
1. If an AIB is not passed in the call, a U261 abend is issued.
2. If the AIB that is passed is not valid, a U476 abend is issued.
3. If the AIB that is passed is not large enough (264 bytes), the AIB return and

reason codes are set to X'104' and X'228'.
4. If the AIB that is passed is not on a fullword boundary, the z/OS system will

return an abend S201.
5. If there are other internal problems with the call, other return and reason codes

are passed back to the z/OS application program. See IMS Version 9: Messages
and Codes, Volume 1for a complete list of these return and reason codes.

The z/OS must link edit with a language module (DFSCDLI0) or this module can
be loaded into the z/OS application region. The entry point for DFSCDLI0 is
AERTDLI.

A simple example of the program flow of a z/OS application program is:
1. Establish the application execution environment.
2. Allocate a PSB.
3. Perform DB calls.
4. Commit the changes.
5. Deallocate the PSB.
6. Terminate the connection.

The following topics provide additional information:
v “Establishing the Application Execution Environment”
v “Allocating a PSB” on page 139
v “Performing DB Calls” on page 140
v “Commit Changes” on page 140
v “Deallocating the PSB” on page 140
v “Terminating the Connection” on page 140

Establishing the Application Execution Environment
The application execution environment must be initialized in the z/OS application
region. Use the CIMS INIT call to initialize the environment. If the optional
DFSRSNM2 field of the AIB contains a startup table ID, a connection to the IMS
DB in the startup table is made. If the field is blank, connect to the IMS DB when
you allocate a PSB.

The form of the connection call is:
CALL AERTDLI parmcount, CIMS, AIB

Where:

CIMS Is the required call function.

138 Application Programming: Design Guide



AIB Has the following fields:

AIBSFUNC
The subfunction is INIT. This field is mandatory.

AIBRSNM1
An optional field that provides an eye catcher identifier of the
application server that is associated with the AIB. This field is 8
bytes.

AIBRSNM2
Provides the optional 4-byte startup table ID. The ID is optional if
the call is issued as preconditioning only. If the ID is given, the
z/OS application region connects to the IMS DB specified in the
DBCTLID parameter of the selected startup table.

The characteristics of the connection are determined from the DRA startup table.
The startup table name is DFSxxxx0, where xxxx is the startup table ID that is used
in the CIMS and APSB calls. Each startup table defines a combination of
connection attributes, one of which is a subsystem ID of the IMS DB.

Related Reading: For more information about building a DRA startup table, see
IMS Version 9: Installation Volume 2: System Definition and Tailoring.

Allocating a PSB
The APSB call, introduced for CPIC-driven programs, is used with the ODBA
interface to allocate a PSB for the z/OS application region. Security is checked
before the call can succeed. See IMS Version 9: Installation Volume 2: System
Definition and Tailoring for details. The APSB call is in the following form:
CALL AERTDLI parmcount, APSB, AIB

Where:

APSB Is the required call function.

AIB Is the name of the application interface block. The fields in the AIB must
be filled in:

AIBRSNM1
Is the 8-character PSB name.

AIBRSNM2
Is the 4-byte startup table ID.

Several conditions must be met for the allocation request to succeed.
1. The PSB must exist and security checking through RACF must succeed.
2. A CIMS INIT call must have been successful.
3. RRS/MVS must be active when the APSB call is made.

Multiple PSBs can be active at the same time, which is typical for server
environments. No token is specifically provided to identify which PSB is to be
used for a given call to a given IMS DB, so the same AIB must be used for all calls
to the same PSB instance (APSB, DB calls, DPSB). This enables multiple instances
of the same PSB to be in use for the same IMS DB at the same time. The
parallelism is controlled by the thread count specified in the startup table. The
maximum number of threads and dependent regions supported by an IMS DB
instance is 999.

Chapter 8. Writing ODBA Application Programs 139



Performing DB Calls
All DL/I calls, with a few exceptions, are supported through the AIB. The
unsupported calls entail message handling (the IOPCB is available only for system
calls), CKPT, ROLL, ROLB, and INQY PROGRAM. Alternate destination PCBs
cannot be used. Both full-function databases and DEDBs are available.

Commit Changes
Synchronization is performed by issuing the distributed commit calls, SRRCMIT or
ATRCMIT, or possibly their rollback forms of SRRBACK or ATRBACK. IMS
sync-point calls are not allowed. Commit is effective for all RRS/MVS controlled
resources in the z/OS task.

Deallocating the PSB
The DPSB call is used when the work unit is complete. In the default case, a
commit call must be issued before a DPSB call can be issued. No DL/I call,
including system service calls, can be made between the commit and the DPSB
call.

The DPSB call is in the following form:
CALL AERTDLI parmcount, DPSB, AIB

Where:

DPSB Is the required call function.

AIB Is the name of the application interface block. The following fields in the
AIB must be filled in:

AIBRSNM1
Is the 8-character PSB name.

AIBSFUNC
Is an optional field. Set it to 'PREPbbbb' when you want to
deallocate the PSB before initialization of commit processing and
when the commit processing is provided from outside the
application.

IMS performs phase 1 commit processing and returns control to
the requestor, but holds the in-doubt work until RRS/MVS (the
commit manager) requests full commit processing. An example is
in DB2 UDB for z/OS Stored Procedures, where DB2 UDB for
z/OS initializes commit processing on behalf of the procedure. See
“DB2 UDB for z/OS Stored Procedures Use of ODBA” on page 141
for a discussion of this scenario.

Terminating the Connection
The termination call is in the following form:
CALL AERTDLI parmcount, CIMS, AIB

Where:

CIMS Is the required call function.

AIB Is the name of the application interface block. The following fields in the
AIB must be filled in:

AIBSFUNC
Is a mandatory field whose value is TERM or TALL. Use TERM to

140 Application Programming: Design Guide



sever a single IMS DB connection. Use TALL to sever all
connections for this z/OS application region and remove the DRA
from the address space.

AIBRSNM1
Is an optional field that provides an eye catcher identifier of the
application server associated with the AIB. This field is 8 bytes in
length.

AIBRSNM2
When subfunction equals TERM, provides the 4-byte startup table
ID used in a previous APSB call. Is not needed when the
subfunction equals TALL.

Server Program Structure
The commit scope within the z/OS application environment is all the work under
the TCB from which the commit request is made to RRS/MVS. Server
environments, therefore, need a separate TCB under which the individual client
requests will be managed. Each TCB will map to a PST for thread handling.

Figure 50 shows an example TCB structure for a server environment.

Each connection to an IMS DB uses a thread under the TCB. When the APSB call is
processed, a context is established and tied to the TCB. At commit time, all
contexts for this TCB are committed or aborted by RRS/MVS.

Loading DFSCDLI0 rather than link editing is attractive when the z/OS application
region is a server supporting many clients with many instances of threads
connected with the IMS DBs.

DB2 UDB for z/OS Stored Procedures Use of ODBA
DB2 UDB for z/OS Stored Procedures are a special case of the general server
structure described in “Server Program Structure.” Stored Procedures connecting to
ODBA require DB2 UDB for z/OS Version 5 or later and must run in a work load
manager (WLM)-managed stored procedures address space.

DB2 UDB for z/OS establishes the ODBA environment by issuing the INIT subcall
for the stored procedure address space. Connection to a specific IMS DB occurs
when the APSB call is issued.

Figure 50. DRA Uses One TCB per Thread

Chapter 8. Writing ODBA Application Programs 141



Each stored procedure running in the stored procedure address space runs under
its own TCB that was established by DB2 UDB for z/OS when the stored
procedure is initialized. DB2 UDB for z/OS issues the commit call on behalf of the
stored procedure when control is returned to DB2 UDB for z/OS. Only the PREP
subfunction of the DPSB call should be issued by the stored procedures
themselves.

Figure 51 illustrates the connection from a DB2 UDB for z/OS Stored Procedures
address space to an IMS DB subsystem. This connection allows DL/I data to be
presented through an SQL interface, either locally to this DB2 UDB for z/OS or to
DRDA® connected DB2 UDB for z/OS databases.

Figure 52 illustrates the general relationships involved with using DB2 UDB for
z/OS Stored Procedures and IMS DB together.

Figure 51. DB2 UDB for z/OS Stored Procedures Connection to IMS DB

Figure 52. DB2 UDB for z/OS Stored Procedures Relationships

142 Application Programming: Design Guide



Chapter 9. Testing an IMS Application Program

This chapter describes what is involved in testing an IMS application program (as
a unit) and provides suggestions on how to do it. The purpose of this test, called a
program unit test, is to ensure that the program correctly handles its input data,
processing, and output test data.

The amount and type of testing you do depends on the individual program you
are testing. Though no strict rules for testing are available, the guidelines offered in
this section might be helpful.

The following topics provide additional information:
v “What You Need to Test an IMS Program”
v “Testing DL/I Call Sequences (DFSDDLT0) Before Testing Your IMS Program”
v “Using IMS Batch Terminal Simulator for z/OS to Test Your IMS Program” on

page 144
v “Tracing DL/I Calls with Image Capture for Your IMS Program” on page 145
v “Requests for Monitoring and Debugging Your IMS Program” on page 149
v “What to Do When Your IMS Program Terminates Abnormally” on page 162

What You Need to Test an IMS Program
Before you start testing your program, be aware of your established test
procedures. To start testing, you need the following three items:
v Test JCL.
v A test database. Never test a program using a production database because the

program, if faulty, might damage valid data.
v Test input data. The input data that you use need not be current, but it should

be valid. You cannot be sure that your output data is valid unless you use valid
input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter. To thoroughly test the program,
try to test as many of the paths that the program can take as possible.

Recommendations:

v Test each path in the program by using input data that forces the program to
execute each of its branches.

v Be sure that your program tests its error routines. Again, use input data that will
force the program to test as many error conditions as possible.

v Test the editing routines your program uses. Give the program as many different
data combinations as possible to make sure it correctly edits its input data.

Testing DL/I Call Sequences (DFSDDLT0) Before Testing Your IMS
Program

The DL/I test program, DFSDDLT0, is an IMS application program that executes
the DL/I calls you specify against any database.

© Copyright IBM Corp. 1974, 2011 143



Restriction: DFSDDLT0 does not work if you are using a coordinator controller
(CCTL).

An advantage of using DFSDDLT0 is that you can test the DL/I call sequence you
will use prior to coding your program. Testing the DL/I call sequence before you
test the program makes debugging easier, because by the time you test the
program, you know that the DL/I calls are correct. When you test the program,
and it does not execute correctly, you know that the DL/I calls are not part of the
problem if you have already tested them using DFSDDLT0.

For each DL/I call that you want to test, you give DFSDDLT0 the call and any
SSAs that you are using with the call. DFSDDLT0 then executes and gives you the
results of the call. After each call, DFSDDLT0 shows you the contents of the DB
PCB mask and the I/O area. This means that for each call, DFSDDLT0 checks the
access path you have defined for the segment, and the effect of the call. DFSDDLT0
is helpful in debugging because it can display IMS application control blocks.

To indicate to DFSDDLT0 the call you want executed, you use four types of control
statements:

Status statements establish print options for DFSDDLT0's output and select the
DB PCB to use for the calls you specify.
Comment statements let you choose whether you want to supply comments.
Call statements indicate to DFSDDLT0 the call you want to execute, any SSAs
you want used with the call, and how many times you want the call executed.
Compare statements tell DFSDDLT0 that you want it to compare its results
after executing the call with the results you supply.

In addition to testing call sequences to see if they work, you can also use
DFSDDLT0 to check the performance of call sequences.

Related Reading: For more details about using DFSDDLT0, and how to check call
sequence performance, see:
v IMS Version 9: Application Programming: Database Manager

v IMS Version 9: Application Programming: Transaction Manager

Using IMS Batch Terminal Simulator for z/OS to Test Your IMS Program
IMS Batch Terminal Simulator for z/OS (Batch Terminal Simulator II) is a valuable
tool for testing programs because you can use it to test call sequences. The
documentation IMS Batch Terminal Simulator for z/OS produces is helpful in
debugging. You can also test online application programs without actually running
them online.

Restriction: IMS Batch Terminal Simulator for z/OS does not work if you are
using a CCTL or running under DBCTL.

Related Reading: For information about how to use IMS Batch Terminal Simulator
for z/OS, refer to IMS Batch Terminal Simulator for z/OS: User's Guide and Reference,
SC18-7149.

Testing DL/I Call Sequences

144 Application Programming: Design Guide



Tracing DL/I Calls with Image Capture for Your IMS Program
The DL/I image capture program (DFSDLTR0) is a trace program that can trace
and record DL/I calls issued by all types of IMS application programs.

Restriction: The image capture program does not trace calls to Fast Path databases.

You can run the image capture program in a DB/DC or a batch environment to:
Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.
Produce input for DFSDDLT0

You can use the output produced by the image capture program as input to
DFSDDLT0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLT0.
Debug your program

When your program terminates abnormally, you can rerun the program using
the image capture program, which can then reproduce and document the
conditions that led to the program failure. You can use the information in the
report produced by the image capture program to find and fix the problem.

The following topics provide additional information:
v “Using Image Capture with DFSDDLT0”
v “Restrictions on Using Image Capture Output” on page 146
v “Running Image Capture Online” on page 146
v “Running Image Capture as a Batch Job” on page 147
v “Retrieving Image Capture Data from the Log Data Set” on page 148

Using Image Capture with DFSDDLT0
The image capture program produces the following control statements that you can
use as input to DFSDDLT0:

Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:
– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I

calls, and the results of all comparisons.
– Determines the new relative PCB number each time a PCB change occurs

while the application program is executing.
Comments statement

The image capture program also produces a comments statement when you
invoke it. The comments statements give:
– The time and date IMS started the trace
– The name of the PSB being traced
The image capture program also produces a comments statement preceding any
call in which IMS finds an error.
Call statements

The image capture program produces a call statement for each DL/I call the
application program issues. It also generates a CHKP call when it starts the trace
and after each commit point or CHKP request.

DL/I Image Capture Program

Chapter 9. Testing an IMS Application Program 145



Compare statements

The image capture program produces data and PCB comparison statements if
you specify COMP on the TRACE command (if you run the image capture
program online), or on the DLITRACE control statement (if you run the image
capture program as a batch job).

Restrictions on Using Image Capture Output
The status statement of the image capture call is based on relative PCB position.
When the PCB parameter LIST=NO has been specified, the status statement may
need to be changed to select the PCB as follows:
v If all PCBs have the parameter LIST=YES, the status statement does not need to

be changed.
v If all PCBs have the parameter LIST=NO, the status statement needs to be

changed from the relative PCB number to the correct PCB name.
v If some PCBs have the parameter LIST=YES and some have the parameter

LIST=NO, the status statement needs to be changed as follows:
– The PCB relative position is based on all PCBs as if LIST=YES.
– For PCBs that have a PCB name, the status statement can be changed to use

the PCB name based on a relative PCB number.
– For PCBs that have LIST=YES and no PCB name, change the relative PCB

number to refer to the relative PCB number in the user list by looking at the
PCB list using LIST=YES and LIST=NO.

Running Image Capture Online
When you run the image capture program online, the trace output goes to the IMS
log data set. To run the image capture program online, you issue the IMS TRACE
command from the IMS master terminal.

If you trace a BMP or an MPP and you want to use the trace results with
DFSDDLT0, the BMP or MPP must have exclusive write access to the databases it
processes. If the application program does not have exclusive access, the results of
DFSDDLT0 may differ from the results of the application program. When you trace
a BMP that accesses GSAM databases, you must include an //IMSERR DD
statement to get a formatted dump of the GSAM control blocks.

The following diagram shows the TRACE command format:

�� / TRACE SET
ON
OFF PSB psbname

NOCOMP
COMP

��

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one
PSB at the same time by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB compare statements to be used as input to DFSDDLT0.

DL/I Image Capture Program

146 Application Programming: Design Guide



Running Image Capture as a Batch Job
To run the image capture program as a batch job, you use the DLITRACE control
statement in the DFSVSAMP DD data set. In the DLITRACE control statement, you
specify:
v Whether you want to trace all of the DL/I calls the program issues or trace only

a certain group of calls.
v Whether you want the trace output to go to:

A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

Format of DLITRACE Control Statement
The format of the DLITRACE control statement is:

DLITRACE
Invokes the trace. If this is the only parameter you specify, IMS uses default
values for the remaining parameters.

LOG = YES|NO
Specifies whether you want IMS to route trace output to the IMS log. NO is
the default.

DDNAME = anyname|DFSTROUT
Specifies the ddname of the sequential data set to which you want trace output
sent. The default is DFSTROUT. However, if you specify LOG = YES, and you
do not supply a value for the DDNAME parameter, IMS does not try to open
the data set defined by DFSTROUT.

START = n|0
Gives the number of the first Dl/I call in the program that you want traced.
The value is a one- to eight-character hexadecimal number. If you do not
supply a value, the trace starts with the first DL/I call in the program.

STOP = n|7FFFFFFF
Specifies the number of the last DL/I call in the program that you want traced.
The value is a one- to eight-character hexadecimal number. The default and
maximum is X'7FFFFFFF'.

COMP|NOCOMP
Specifies whether you want DFSDLTR0 to produce data and PCB comparison
statements that are to be used as input to DFSDDLT0. NOCOMP is the default.

Notes:

1. DLITRACE must begin in column 1; the remainder of the parameters are
nonpositional.

2. Each parameter can be used only once in the control statement.
3. Only one trace control statement is allowed for a program.

Example of DLITRACE
This example shows a DLITRACE control statement that:
v Traces the first 14 DL/I calls or commands that the program issues
v Sends the output to the IMS log data set

��
7FFFFFFF

, STOP = n
, NOCOMP
, COMP

��

DL/I Image Capture Program

Chapter 9. Testing an IMS Application Program 147



v Produces data and PCB comparison statements for DFSDDLT0, program
//DFSVSAMP DD *
DLITRACE LOG=YES,STOP=14,COMP
/*

Special JCL Requirements for Running Image Capture in Batch
Special JCL requirements are as follows:

//IEFRDER DD
If you want log data set output, this DD statement is required to define the
IMS log data set.

//DFSTROUT DD|anyname
If you want sequential data set output, this DD statement is required to define
that data set. If you want to specify an alternate ddname (anyname), specify it
by using the DDNAME parameter on the DLITRACE control statement.

DCB parameters are required for this DD statement only when you want to
use the output for problem determination and the program being traced
abends. In this case, add the BLKSIZE=80 parameter to the DFSTROUT DD
statement to ensure that all the generated output is written to the data set.
Buffering the output may leave some of the traced data in the output buffers at
abend time. If the BLKSIZE= parameter is not specified in the JCL for the
DFSTROUT DD statement, the block size defaults to a system generated block
size. The DCB parameters generated in the trace program are:
v RECFM=F
v LRECL=80

Notes on Using Image Capture
v If the program being traced issues CHKP and XRST calls, the checkpoint and

restart information may not be directly reproducible when you use the trace
output with DFSDDLT0.

v When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace
output, the results are the same as the application program's results, but only if
the database has not been altered.

Retrieving Image Capture Data from the Log Data Set
If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERA50
deblocks, formats, and numbers the image capture program records that are to be
retrieved. To use DFSERA50, you must insert a DD statement defining a sequential
output data set in the DFSERA10 input stream. The default ddname for this DD
statement is TRCPUNCH. The statement must specify BLKSIZE=80.

Examples: You can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:
v Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

v Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

DL/I Image Capture Program

148 Application Programming: Design Guide



v Format image capture program records (in a format that can be used as input
to DFSDDLT0):
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C

VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

Point to remember: The DDNAME= parameter names the DD statement to be
used by DFSERA50. The data set that is defined on the
OUTDDN DD statement is used instead of the default
TRCPUNCH DD statement. For this example, the DD is:
//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for Monitoring and Debugging Your IMS Program
You can use the following two requests to help you in debugging your program:
v The Statistics (STAT) call retrieves database statistics.
v The Log (LOG) call makes it possible for the application program to write a

record on the system log.

The enhanced OSAM and VSAM STAT calls provide additional information for
monitoring performance and fine tuning of the system for specific needs.

When the enhanced STAT call is issued, the following information is returned:
v OSAM statistics for each defined subpool
v VSAM statistics that also include hiperspace statistics
v OSAM and VSAM count fields that have been expanded to 10 digits

The following topics provide additional information:
v “Retrieving Database Statistics: The STAT Call”
v “Writing Information to the System Log: The LOG Request” on page 162

Retrieving Database Statistics: The STAT Call

Product-sensitive programming interface

This section contains product-sensitive programming interface information.

End of Product-sensitive programming interface

The STAT call is helpful in debugging a program because it retrieves IMS database
statistics. It is also helpful in monitoring and fine tuning for performance. The STAT
call retrieves OSAM database buffer pool statistics and VSAM database buffer
subpool statistics.

Related Reading: For information on coding the STAT call, see the appropriate
application programming book.

When you issue the STAT call, you indicate:
v An I/O area into which the statistics are to be returned.
v A statistics function, which is the name of a 9-byte area whose contents describe

the type and format of the statistics you want returned. The contents of the area
are defined as follows:

DL/I Image Capture Program

Chapter 9. Testing an IMS Application Program 149



– The first 4 bytes define the type of statistics desired (OSAM or VSAM).
– The 5th byte defines the format to be returned (formatted, unformatted, or

summary).
– The remaining 4 bytes are defined as follows:

- The normal or enhanced STAT call contains 4 bytes of blanks.
- The extended STAT call contains the 4-byte parameter ' E1 ' (a 1-byte blank,

followed by a 2-byte character string, and then another 1-byte blank).

Format of OSAM Buffer Pool Statistics

For OSAM buffer pool statistics, the values are possible for the stat-function
parameter and for the format of the data that is returned to the application
program. If no OSAM buffer pool is present, a GE status code is returned to the
program.

DBASF: This function value provides the full OSAM database buffer pool
statistics in a formatted form. The application program I/O area must be at least
360 bytes. Three 120-byte records (formatted for printing) are provided as two
heading lines and one line of statistics. The following diagram shows the data
format.

BLOCK REQ
Number of block requests received.

FOUND IN POOL
Number of times the block requested was found in the buffer pool.

READS ISSUED
Number of OSAM reads issued.

BUFF ALTS
Number of buffers altered in the pool.

OSAM WRITES
Number of OSAM writes issued.

BLOCKS WRITTEN
Number of blocks written from the pool.

NEW BLOCKS
Number of new blocks created in the pool.

CHAIN WRITES
Number of chained OSAM writes issued.

WRITTEN AS NEW
Number of blocks created.

LOGICAL CYL FORMAT
Number of format logical cylinder requests issued.

PURGE REQ
Number of purge user requests.

BLOCK FOUND READS BUFF OSAM BLOCKS NEW CHAIN
REQ IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES

nnnnnnn nnnnnnn nnnnn nnnnnnn nnnnnnn nnnnnnn nnnnn nnnnn

WRITTEN LOGICAL PURGE RELEASE
AS NEW CYL REQ REQ ERRORS

FORMAT
nnnnnnn nnnnnnn nnnnnnn nnnnnnn nn/nn

Requests for Monitoring and Debugging

150 Application Programming: Design Guide



RELEASE REQ
Number of release ownership requests.

ERRORS
Number of write error buffers currently in the pool or the largest number
of errors in the pool during this execution.

DBASU: This function value provides the full OSAM database buffer pool
statistics in an unformatted form. The application program I/O area must be at
least 72 bytes. Eighteen fullwords of binary data are provided:

Word Contents

1 A count of the number of words that follow.

2-18 The statistic values in the same sequence as presented by the DBASF
function value.

DBASS: This function value provides a summary of the OSAM database buffer
pool statistics in a formatted form. The application program I/O area must be at
least 180 bytes. Three 60-byte records (formatted for printing) are provided. The
following diagram shows the data format.

SIZE Buffer pool size.

REQ1 Number of block requests.

REQ2 Number of block requests satisfied in the pool plus new blocks created.

READ Number of read requests issued.

WRITES
Number of OSAM writes issued.

LCYL Number of format logical cylinder requests.

PURG Number of purge user requests.

OWNRR
Number of release ownership requests.

ERRORS
Number of permanent errors now in the pool or the largest number of
permanent errors during this execution.

Format of VSAM Buffer Subpool Statistics
Because there might be several buffer subpools for VSAM databases, the STAT call
is iterative when requesting these statistics. If more than one VSAM local shared
resource pool is defined, statistics are retrieved for all VSAM local shared resource
pools in the order in which they are defined. For each local shared resource pool,
statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest
buffer size are provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool
statistics always follow statistics of the data subpools. Index subpool statistics are
also retrieved in ascending order based on the buffer size.

DATA BASE BUFFER POOL: SIZE nnnnnnn
REQ1 nnnnn REQ2 nnnnn READ nnnnn WRITES nnnnn LCYL nnnnn
PURG nnnnn OWNRR nnnnn ERRORS nn/nn

Requests for Monitoring and Debugging

Chapter 9. Testing an IMS Application Program 151



The final call for the series returns a GA status code in the PCB. The statistics
returned are totals for all subpools in all local shared resource pools. If no VSAM
buffer subpools are present, a GE status code is returned to the program.

VBASF: This function value provides the full VSAM database subpool statistics in
a formatted form. The application program I/O area must be at least 360 bytes.
Three 120-byte records (formatted for printing) are provided as two heading lines
and one line of statistics. Each successive call returns the statistics for the next data
subpool. If present, statistics for index subpools follow the statistics for data
subpools.

The following diagram shows the data format.
BUFFER HANDLER STATISTICS

BSIZ NBUF RET RBA RET KEY ISRT ES ISRT KS BFR ALT BGWRT SYN PTS
nnnK nnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn

VSAM STATISTICS POOLID: xxxx
GETS SCHBFR FOUND READS USR WTS NUR WTS ERRORS

nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nn/nn

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this VSAM subpool. In the final call, this field is set
to ALL.

NBUF Number of buffers in this subpool. In the final call, this is the number of
buffers in all subpools.

RET RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RET KEY
Number of retrieve-by-key calls received by the buffer handler.

ISRT ES
Number of logical records inserted into ESDSs.

ISRT KS
Number of logical records inserted into KSDSs.

BFR ALT
Number of logical records altered in this subpool. Delete calls that result in
erasing records from a KSDS are not counted.

BGWRT
Number of times the background-write function was executed by the
buffer handler.

SYN PTS
Number of Synchronization calls received by the buffer handler.

GETS Number of VSAM GET calls issued by the buffer handler.

SCHBFR
Number of VSAM SCHBFR calls issued by the buffer handler.

FOUND
Number of times VSAM found the control interval already in the subpool.

READS
Number of times VSAM read a control interval from external storage.

Requests for Monitoring and Debugging

152 Application Programming: Design Guide



USR WTS
Number of VSAM writes initiated by IMS.

NUR WTS
Number of VSAM writes initiated to make space in the subpool.

ERRORS
Number of write error buffers currently in the subpool or the largest
number of write errors in the subpool during this execution.

VBASU: This function value provides the full VSAM database subpool statistics
in a unformatted form. The application program I/O area must be at least 72
bytes. Eighteen fullwords of binary data are provided for each subpool:

Word Contents

1 A count of the number of words that follow.

2-18 The statistic values in the same sequence as presented by the VBASF
function value, except for POOLID, which is not included in this
unformatted form.

VBASS: This function value provides a summary of the VSAM database subpool
statistics in a formatted form. The application program I/O area must be at least
180 bytes. Three 60-byte records (formatted for printing) are provided.

The following diagram shows the data format.

BSIZE Size of the buffers in this VSAM subpool.

POOLID
ID of the local shared resource pool.

TYPE Indicates a data (D) subpool or an index (I) subpool.

RRBA Number of retrieve-by-RBA requests.

RKEY Number of retrieve-by-key requests.

BFALT
Number of logical records altered.

NREC Number of new VSAM logical records created.

SYN PTS
Number of sync point requests.

NMBUFS
Number of buffers in this VSAM subpool.

VRDS Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the
subpool.

VWTS
Number of VSAM control interval writes.

DATA BASE BUFFER POOL: BSIZE nnnnnnn POOLID xxxx Type x
RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SYN PTS nnnnn
NMBUFS nnn VRDS nnnnn FOUND nnnnn VWTS nnnnn ERRORS nn/nn

Requests for Monitoring and Debugging

Chapter 9. Testing an IMS Application Program 153



ERRORS
Number of permanent write errors now in the subpool or the largest
number of errors in this execution.

Format of Enhanced/Extended OSAM Buffer Subpool Statistics

The enhanced OSAM buffer pool statistics provide additional information
generated for each defined subpool. Because there might be several buffer subpools
for OSAM databases, the enhanced STAT call repeatedly requests these statistics.
The first time the call is issued, the statistics for the subpool with the smallest
buffer size is provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size is provided.

The final call for the series returns a GA status code in the PCB. The statistics
returned are the totals for all subpools. If no OSAM buffer subpools are present, a
GE status code is returned.

Extended OSAM buffer pool statistics can be retrieved by including the 4-byte
parameter '�E1�' following the enhanced call function. The extended stat call
returns all of the stats returned with the enhanced call, plus the stats on the
coupling facility buffer invalidates, OSAM caching, and sequential buffering
IMMED/SYNC read counts.

Restriction: The extended format parameter is supported by the DBESO, DBESU,
and DBESF functions only.

DBESF: This function value provides the full OSAM subpool statistics in a
formatted form. The application program I/O area must be at least 600 characters.
For OSAM subpools, five 120-byte records (formatted for printing) are provided.
Three of the records are heading lines and two of the records are lines of subpool
statistics.

Example: The following shows the enhanced stat call format:

Example: The following shows the extended stat call format:

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer
prefix and data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this subpool. Set to ALL for total line. For the
summary totals (BSIZ=ALL), the FIXOPT and POOLID fields are replaced
by an OSM= field. This field is the total size of the OSAM subpool.

B U F F E R H A N D L E R O S A M S T A T I S T I C S FIXOPT=X/X POOLID: xxxx
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT

PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nn1K nnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnn/nnnnnnn

B U F F E R H A N D L E R O S A M S T A T I S T I C S STG CLS= FIXOPT=N/N POOLID:
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT

PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nn1K nnnnnnn5 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnn/nnnnnnn
CF-READS EXPCTD-NF CFWRT-PRI CFWRT-CHG STGCLS-FULL XI-CNT VECTR-XI SB-SEQRD SB-ANTICIP
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

Requests for Monitoring and Debugging

154 Application Programming: Design Guide

|
|
|



NBUFS
Number of buffers in this subpool. This is the total number of buffers in
the pool for the ALL line.

LOCATE-REQ
Number of LOCATE-type calls.

NEW-BLOCKS
Number of requests to create new blocks.

ALTER-REQ
Number of buffer alter calls. This count includes NEW BLOCK and
BYTALT calls.

PURGE-REQ
Number of PURGE calls.

FND-IN-POOL
Number of LOCATE-type calls for this subpool where data is already in
the OSAM pool.

BUFRS-SRCH
Number of buffers searched by all LOCATE-type calls.

READ-REQS
Number of READ I/O requests.

BUFSTL-WRT
Number of single block writes initiated by buffer steal routine.

PURGE-WRTS
Number of blocks for this subpool written by purge.

WT-BUSY-ID
Number of LOCATE calls that waited due to busy ID.

WT-BUSY-WR
Number of LOCATE calls that waited due to buffer busy writing.

WT-BUSY-RD
Number of LOCATE calls that waited due to buffer busy reading.

WT-RLSEOWN
Number of buffer steal or purge requests that waited for ownership to be
released.

WT-NO-BFRS
Number of buffer steal requests that waited because no buffers are
available to be stolen.

ERRORS
Total number of I/O errors for this subpool or the number of buffers
locked in pool due to write errors.

CF-READS
Number of blocks read from CF.

EXPCTD-NF
Number of blocks expected but not read.

CFWRT-PRI
Number of blocks written to CF (prime).

CFWRT-CHG
Number of blocks written to CF (changed).

Requests for Monitoring and Debugging

Chapter 9. Testing an IMS Application Program 155



STGGLS-FULL
Number of blocks not written (STG CLS full).

XI-CNTL
Number of XI buffer invalidate calls.

VECTR-XI
Number of buffers found invalidated by XI on VECTOR call.

SB-SEQRD
Number of immediate (SYNC) sequential reads (SB stat).

SB-ANTICIP
Number of anticipatory reads (SB stat).

DBESU: This function value provides full OSAM statistics in an unformatted
form. The application program I/O area must be at least 84 bytes. Twenty-one
fullwords of binary data are provided for each subpool:

Word Contents

1 A count of the number of words that follow.

2-19 The statistics provided in the same sequence as presented by the DBESF
function value.

20 The POOLID provided at subpool definition time.

21 The second byte contains the following fix options for this subpool:
v X'04' = DATA BUFFER PREFIX fixed
v X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL), for word 21, contain the total size of
the OSAM pool.

22-30 Extended stat data in same sequence as on DBESF call.

DBESS: This function value provides a summary of the OSAM database buffer
pool statistics in a formatted form. The application program I/O area must be at
least 360 bytes. Six 60-byte records (formatted for printing) are provided. This STAT
call is a restructured DBASF STAT call that allows for 10-digit count fields. In
addition, the subpool header blocks give a total of the number of OSAM buffers in
the pool.

The following shows the data format:

NSUBPL
Number of subpools defined for the OSAM buffer pool.

NBUFS
Total number of buffers defined in the OSAM buffer pool.

BLKREQ
Number of block requests received.

INPOOL
Number of times the block requested is found in the buffer pool.

DATA BASE BUFFER POOL: NSUBPL nnnnnn NBUFS nnnnnnnn
BLKREQ nnnnnnnnnn INPOOL nnnnnnnnnn READS nnnnnnnnnn
BUFALT nnnnnnnnnn WRITES nnnnnnnnnn BLKWRT nnnnnnnnnn
NEWBLK nnnnnnnnnn CHNWRT nnnnnnnnnn WRTNEW nnnnnnnnnn
LCYLFM nnnnnnnnnn PURGRQ nnnnnnnnnn RLSERQ nnnnnnnnnn
FRCWRT nnnnnnnnnn ERRORS nnnnnnnn/nnnnnnnn

Requests for Monitoring and Debugging

156 Application Programming: Design Guide



READS
Number of OSAM reads issued.

BUFALT
Number of buffers altered in the pool.

WRITES
Number of OSAM writes issued.

BLKWRT
Number of blocks written from the pool.

NEWBLK
Number of blocks created in the pool.

CHNWRT
Number of chained OSAM writes issued.

WRTNEW
Number of blocks created.

LCYLFM
Number of format logical cylinder requests issued.

PURGRQ
Number of purge user requests.

RLSERQ
Number of release ownership requests.

FRCWRT
Number of forced write calls.

ERRORS
Number of write error buffers currently in the pool or the largest number
of errors in the pool during this execution.

DBESO: This function value provides the full OSAM database subpool statistics
in a formatted form for online statistics that are returned as a result of a /DIS POOL
command. This call can also be a user-application STAT call. When issued as an
application DL/I STAT call, the program I/O area must be at least 360 bytes. Six
60-byte records (formatted for printing) are provided.

Example: The following shows the enhanced stat call format:
OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X

LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn

Example: The following shows the extended stat call format:
OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X

LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn
CFREAD nnnnnnnnnn CFEXPC nnnnnnnnnn CFWRPR nnnnn/nnnnn
CFWRCH nnnnnnnnnn STGCLF nnnnnnnnnn XIINV nnnnn/nnnnn
XICLCT nnnnnnnnnn SBSEQR nnnnnnnnnn SBANTR nnnnn/nnnnn

POOLID
ID of the local shared resource pool.

Requests for Monitoring and Debugging

Chapter 9. Testing an IMS Application Program 157



BSIZE Size of the buffers in this subpool. Set to ALL for summary total line. For
the summary totals (BSIZE=ALL), the FX= field is replaced by the OSAM=
field. This field is the total size of the OSAM buffer pool. The POOLID is
not shown. For the summary totals (BSIZE=ALL), the FX= field is replaced
by the OSAM= field. This field is the total size of the OSAM buffer pool.
The POOLID is not shown.

NBUF Number of buffers in this subpool. Total number of buffers in the pool for
the ALL line.

FX= Fixed options for this subpool. Y or N indicates whether the data buffer
prefix and data buffers are fixed.

LCTREQ
Number of LOCATE-type calls.

NEWBLK
Number of requests to create new blocks.

ALTREQ
Number of buffer alter calls. This count includes NEW BLOCK and
BYTALT calls.

PURGRQ
Number of PURGE calls.

FNDIPL
Number of LOCATE-type calls for this subpool where data is already in
the OSAM pool.

BFSRCH
Number of buffers searched by all LOCATE-type calls.

RDREQ
Number of READ I/O requests.

BFSTLW
Number of single-block writes initiated by buffer-steal routine.

PURGWR
Number of buffers written by purge.

WBSYID
Number of LOCATE calls that waited due to busy ID.

WBSYWR
Number of LOCATE calls that waited due to buffer busy writing.

WBSYRD
Number of LOCATE calls that waited due to buffer busy reading.

WRLSEO
Number of buffer steal or purge requests that waited for ownership to be
released.

WNOBRF
Number of buffer steal requests that waited because no buffers are
available to be stolen.

ERRORS
Total number of I/O errors for this subpool or the number of buffers
locked in pool due to write errors.

CFREAD
Number of blocks read from CF.

Requests for Monitoring and Debugging

158 Application Programming: Design Guide

|
|
|
|
|
|



CFEXPC
Number of blocks expected but not read.

CFWRPR
Number of blocks written to CF (prime).

CFWRCH
Number of blocks written to CF (changed).

STGCLF
Number of blocks not written (STG CLS full).

XIINV
Number of XI buffer invalidate calls.

XICLCT
Number of buffers found invalidated by XI on VECTOR call.

SBSEQR
Number of immediate (SYNC) sequential reads (SB stat).

SBANTR
Number of anticipatory reads (SB stat).

Format of Enhanced VSAM Buffer Subpool Statistics

The enhanced VSAM buffer subpool statistics provide information on the total size
of VSAM subpools in virtual storage and in hiperspace. All count fields are 10
digits.

Because there might be several buffer subpools for VSAM databases, the enhanced
STAT call repeatedly requests these statistics. If more than one VSAM local shared
resource pool is defined, statistics are retrieved for all VSAM local shared resource
pools in the order in which they are defined. For each local shared resource pool,
statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest
buffer size are provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool
statistics always follow the data subpools statistics. Index subpool statistics are also
retrieved in ascending order based on the buffer size.

The final call for the series returns a GA status code in the PCB. The statistics
returned are totals for all subpools in all local shared resource pools. If no VSAM
buffer subpools are present, a GE status code is returned to the program.

VBESF: This function value provides the full VSAM database subpool statistics in
a formatted form. The application program I/O area must be at least 600 bytes. For
each shared resource pool ID, the first call returns five 120-byte records (formatted
for printing). Three of the records are heading lines and two of the records are
lines of subpool statistics.

The following shows the data format:

Requests for Monitoring and Debugging

Chapter 9. Testing an IMS Application Program 159



FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer
prefix, the index buffers, and the data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this subpool. Set to ALL for total line. For the
summary totals (BSIZ=ALL), the FIXOPT and POOLID fields are replaced
by a VS= field and a HS= field. The VS= field is the total size of the VSAM
subpool in virtual storage. The HS= field is the total size of the VSAM
subpool in hiperspace.

NBUFFRS
Number of buffers in this subpool. Total number of buffers in the VSAM
pool that appears in the ALL line.

HS-NBUF
Number of hiperspace buffers defined for this subpool.

RETURN-RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RETURN-KEY
Number of retrieve-by-key calls received by the buffer handler.

ESDS-INSRT
Number of logical records inserted into ESDSs.

KSDS-INSRT
Number of logical records inserted into KSDSs.

BUFFRS-ALT
Number of logical records altered in this subpool. Delete calls that result in
erasing records from a KSDS are not counted.

BKGRND-WRT
Number of times the background write function was executed by the
buffer handler.

SYNC-POINT
Number of Synchronization calls received by the buffer handler.

ERRORS
Number of write error buffers currently in the subpool or the largest
number of write errors in the subpool during this execution.

VSAM-GETS
Number of VSAM Get calls issued by the buffer handler.

SCHED-BUFR
Number of VSAM Scheduled-Buffer calls issued by the buffer handler

VSAM-FOUND
Number of times VSAM found the control interval in the buffer pool.

VSAM-READS
Number of times VSAM read a control interval from external storage.

B U F F E R H A N D L E R S T A T I S T I C S / V S A M S T A T I S T I C S FIXOPT=X/X/X POOLID: xxxx
BSIZ NBUFFRS HS-NBUF RETURN-RBA RETURN-KEY ESDS-INSRT KSDS-INSRT BUFFRS-ALT BKGRND-WRT SYNC-POINT ERRORS

VSAM-GETS SCHED-BUFR VSAM-FOUND VSAM-READS USER-WRITS VSAM-WRITS HSRDS-SUCC HSWRT-SUCC HSR/W-FAIL
nn1K nnnnnn nnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnn/nnnnnn

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnn/nnnnn

Requests for Monitoring and Debugging

160 Application Programming: Design Guide

|
|
|
|
|



USER-WRITS
Number of VSAM writes initiated by IMS.

VSAM-WRITS
Number of VSAM writes initiated to make space in the subpool.

HSRDS-SUCC
Number of successful VSAM reads from hiperspace buffers.

HSWRT-SUCC
Number of successful VSAM writes from hiperspace buffers.

HSR/W-FAIL
Number of failed VSAM reads from hiperspace buffers/number of failed
VSAM writes to hiperspace buffers. This indicates the number of times a
VSAM READ/WRITE request from or to hiperspace resulted in DASD
I/O.

VBESU: This function value provides full VSAM statistics in an unformatted
form. The application program I/O area must be at least 104 bytes. Twenty-five
fullwords of binary data are provided for each subpool.

Word Contents

1 A count of the number of words that follow.

2-23 The statistics provided in the same sequence as presented by the VBESF
function value.

24 The POOLID provided at the time the subpool is defined.

25 The first byte contains the subpool type, and the third byte contains the
following fixed options for this subpool:
v X'08' = INDEX BUFFERS fixed
v X'04' = DATA BUFFER PREFIX fixed
v X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL) for word 25 and word 26 contain the
virtual and hiperspace pool sizes.

VBESS: This function value provides a summary of the VSAM database subpool
statistics in a formatted form. The application program I/O area must be at least
360 bytes. For each shared resource pool ID, the first call provides six 60-byte
records (formatted for printing).

The following shows the data format:

POOLID
ID of the local shared resource pool.

BSIZE Size of the buffers in this VSAM subpool.

TYPE Indicates a data (D) subpool or an index (I) subpool.

FX Fixed options for this subpool. Y or N indicates whether the data buffer
prefix, the index buffers, and the data buffers are fixed.

VSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnnK TYPE x FX=X/X/X
RRBA nnnnnnnnnn RKEY nnnnnnnnnn BFALT nnnnnnnnnn
NREC nnnnnnnnnn SYNC PT nnnnnnnnnn NBUFS nnnnnnnnnn
VRDS nnnnnnnnnn FOUND nnnnnnnnnn VWTS nnnnnnnnnn
HSR-S nnnnnnnnnn HSW-S nnnnnnnnnn HS NBUFS nnnnnnnn
HS-R/W-FAIL nnnnn/nnnnn ERRORS nnnnnn/nnnnnn

Requests for Monitoring and Debugging

Chapter 9. Testing an IMS Application Program 161



RRBA
Number of retrieve-by-RBA calls received by the buffer handler.

RKEY Number of retrieve-by-key calls received by the buffer handler.

BFALT
Number of logical records altered.

NREC Number of new VSAM logical records created.

SYNC PT
Number of sync point requests.

NBUFS
Number of buffers in this VSAM subpool.

VRDS Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the
subpool.

VWTS
Number of VSAM control interval writes.

HSR-S
Number of successful VSAM reads from hiperspace buffers.

HSW-S
Number of successful VSAM writes to hiperspace buffers.

HS NBUFS
Number of VSAM hiperspace buffers defined for this subpool.

HS-R/W-FAIL
Number of failed VSAM reads from hiperspace buffers and number of
failed VSAM writes to hiperspace buffers. This indicates the number of
times a VSAM READ/WRITE request to or from hiperspace resulted in
DASD I/O.

ERRORS
Number of permanent write errors now in the subpool or the largest
number of errors in this execution.

Writing Information to the System Log: The LOG Request
An application program can write a record to the system log by issuing the LOG
call. When you issue the LOG request, you specify the I/O area that contains the
record you want written to the system log. You can write any information to the
log that you want, and you can use different log codes to distinguish between
different types of information.

Related Reading: For information about coding the LOG request, see the
appropriate application programming reference book.

What to Do When Your IMS Program Terminates Abnormally
When your program terminates abnormally, you can take the following actions to
simplify the task of finding and fixing the problem:
v Record as much information as possible about the circumstances under which

the program terminated abnormally.
v Check for certain initialization and execution errors.

Requests for Monitoring and Debugging

162 Application Programming: Design Guide



Recommended Actions after an Abnormal Termination of an
IMS Program

Many places have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are common guidelines:
v Document the error situation to help in investigating and correcting it. The

following information can be helpful:
– The program's PSB name
– The transaction code that the program was processing (online programs only)
– The text of the input message being processed (online programs only)
– The call function
– The name of the originating logical terminal (online programs only)
– The contents of the PCB that was referenced in the call that was executing
– The contents of the I/O area when the problem occurred
– If a database call was executing, the SSAs, if any, that the call used
– The date and time of day

v When your program encounters an error, it can pass all the required error
information to a standard error routine. You should not use STAE or ESTAE
routines in your program; IMS uses STAE or ESTAE routines to notify the
control region of any abnormal termination of the application program. If you
call your own STAE or ESTAE routines, IMS may not get control if an abnormal
termination occurs. For additional information about STAE or ESTAE routines,
see “Use of STAE or ESTAE and SPIE in IMS Programs” on page 48.

v Online programs might want to send a message to the originating logical
terminal to inform the person at the terminal that an error has occurred. Unless
you are using a CCTL, your program can get the logical terminal name from the
I/O PCB, place it in an express PCB, and issue one or more ISRT calls to send
the message.

v An online program might also want to send a message to the master terminal
operator giving information about the program's termination. To do this, the
program places the logical terminal name of the master terminal in an express
PCB and issues one or more ISRT calls. (This is not applicable if you are using a
CCTL.)

v You might also want to send a message to a printer so that you will have a
hard-copy record of the error.

v You can send a message to the system log by issuing a LOG request.
v Some places run a BMP at the end of the day to list all the errors that have

occurred during the day. If your shop does this, you can send a message using
an express PCB that has its destination set for that BMP. (This is not applicable if
you are using a CCTL.)

Diagnosing an Abnormal Termination of an IMS Program
If your program does not run correctly when you are testing it or when it is
executing, you need to isolate the problem. The problem might be anything from a
programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

IMS Program Initialization Errors
Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the

What to Do When Your IMS Program Terminates Abnormally

Chapter 9. Testing an IMS Application Program 163



problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

IMS Program Execution Errors
If you do not have any initialization errors, check:
1. The output from the compiler. Make sure that all error messages have been

resolved.
2. The output from the linkage editor:

v Are all external references resolved?
v Have all necessary modules been included?
v Was the language interface module correctly included?
v Is the correct entry point specified?

3. Your JCL:
v Is the information that described the files that contain the databases correct?

If not, check with your DBA.
v Have you included the DL/I parameter statement in the correct format?
v Have you included the region size parameter in the EXEC statement? Does it

specify a region or partition large enough for the storage required for IMS
and your program?

v Have you declared the fields in the PCB masks correctly?
v If your program is an assembler language program, have you saved and

restored registers correctly? Did you save the list of PCB addresses at entry?
Does register 1 point to a parameter list of fullwords before issuing any DL/I
calls?

v For COBOL and PL/I, are the literals you are using for arguments in DL/I
calls producing the results you expect? For example, in PL/I, is the
parameter count being generated as a half-word instead of a fullword, and is
the function code producing the required 4-byte field?

v Use the PCB as much as possible to determine what in your program is
producing incorrect results.

What to Do When Your IMS Program Terminates Abnormally

164 Application Programming: Design Guide



Chapter 10. Testing a CICS Application Program

This chapter tells you what is involved in testing a CICS application program as a
unit and gives you some suggestions on how to do testing. This stage of testing is
called program unit test. The purpose of program unit test is to test each application
program as a single unit to ensure that the program correctly handles its input
data, processing, and output data.

The amount and type of testing you do depends on the individual program.
Though strict rules for testing are not available, the guidelines provided in this
chapter might be helpful.

The following topics provide additional information:
v “What You Need to Test a CICS Program”
v “Testing Your CICS Program” on page 166
v “Requests for Monitoring and Debugging Your CICS Program” on page 171
v “What to Do When Your CICS Program Terminates Abnormally” on page 171

What You Need to Test a CICS Program
When you are ready to test your program, be aware of your established test
procedures before you start. To start testing, you need the following three items:
v Test JCL.
v A test database. When you are testing a program, do not execute it against a

production database because the program, if faulty, might damage valid data.
v Test input data. The input data that you use need not be current, but it should

be valid data. You cannot be sure that your output data is valid unless you use
valid input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter.

To thoroughly test the program, try to test as many of the paths that the program
can take as possible. For example:
v Test each path in the program by using input data that forces the program to

execute each of its branches.
v Be sure that your program tests its error routines. Again, use input data that will

force the program to test as many error conditions as possible.
v Test the editing routines your program uses. Give the program as many different

data combinations as possible to make sure it correctly edits its input data.

© Copyright IBM Corp. 1974, 2011 165



Testing Your CICS Program
You can use different tools to test a program, depending on the type of program.
Table 22 summarizes the tools that are available for Online DBCTL, Batch, and
BMP programs.

Table 22. Tools You Can Use for Testing Your Program

Tool
Online
(DBCTL) Batch BMP

Execution Diagnostic Facility (EDF) Yes1 No No

CICS Dump Control Yes No No

CICS Trace Control Yes Yes No

DFSDDLT0 No Yes2 Yes2

DL/I Image Capture Program Yes Yes Yes

Notes:

1. For online, command-level programs only.

2. For call-level programs only. (For a command-level batch program, you can use DL/I
image capture program first, to produce calls for DFSDDLT0.)

The following topics provide additional information:
v “Using the Execution Diagnostic Facility (Command-Level Only)”
v “Using CICS Dump Control” on page 167
v “Using CICS Trace Control” on page 167
v “Using the DL/I Test Program (DFSDDLT0)” on page 167
v “Tracing DL/I Calls with Image Capture” on page 167

Using the Execution Diagnostic Facility (Command-Level
Only)

You can use the Execution Diagnostic Facility (EDF) to test command-level
programs online. EDF can display EXEC CICS and EXEC DLI commands in online
programs; it cannot intercept DL/I calls. (To test a call-level online program, you
can use the CICS dump control facility or the CICS trace facility, described in the
following section s.)

With EDF you can:
v Display and modify working storage; you can change values in the DIB.
v Display and modify a command before it is executed. You can modify the value

of any argument, and then execute the command.
v Modify the return codes after the execution of the command. After the command

has been executed, but before control is returned to the application program, the
command is intercepted to show the response and any argument values set by
CICS.

You can run EDF on the same terminal as the program you are testing.

Related Reading: For more information about using EDF, see “Execution
(Command-Level) Diagnostic Facility” in CICS Application Programming Reference.

Testing Your CICS Program

166 Application Programming: Design Guide



Using CICS Dump Control
You can use the CICS dump control facility to dump virtual storage areas, CICS
tables, and task-related storage areas.

For more information about using the CICS dump control facility, see the CICS
application programming reference manual that applies to your version of CICS.

Using CICS Trace Control
You can use the trace control facility to help debug and monitor your online
programs in the DBCTL environment. You can use trace control requests to record
entries in a trace table. The trace table can be located either in virtual storage or on
auxiliary storage. If it is in virtual storage, you can gain access to it by
investigating a dump; if it is on auxiliary storage, you can print the trace table. For
more information about the control statements you can use to produce trace
entries, see the information about trace control in the application programming
reference manual that applies to your version of CICS.

Using the DL/I Test Program (DFSDDLT0)
See “Testing DL/I Call Sequences (DFSDDLT0) Before Testing Your IMS Program”
on page 143 for a description of DFSDDLT0. DFSDDLT0 can be used for testing
batch or BMP programs.

Tracing DL/I Calls with Image Capture
DL/I image capture program (DFSDLTR0) is a trace program that can trace and
record DL/I calls issued by batch, BMP, and online (DBCTL environment)
programs. You can also use the image capture program with command-level
programs, and you can produce calls for use as input to DFSDDLT0. You can use
the image capture program to:

Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.
Produce input for DFSDDLT0 (DL/I test program)

You can use the output produced by the image capture program as input to
DFSDDLT0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLT0. For
example, you can use the image capture program with a command-level
program, to produce calls for DFSDDLT0.
Debug your program

When your program terminates abnormally, you can rerun the program using
the image capture program. The image capture program can then reproduce
and document the conditions that led to the program failure. You can use the
information in the report produced by the image capture program to find and
fix the problem.

The following topics provide additional information:
v “Using Image Capture with DFSDDLT0” on page 168
v “Running Image Capture Online” on page 168
v “Running Image Capture in Batch” on page 169
v “Example of DLITRACE” on page 170
v “Special JCL Requirements” on page 170

Testing Your CICS Program

Chapter 10. Testing a CICS Application Program 167



v “Notes on Using Image Capture” on page 170
v “Retrieving Image Capture Data from the Log Data Set” on page 170

Using Image Capture with DFSDDLT0
The image capture program produces the following control statements that you can
use as input to DFSDDLT0:

Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:
– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I

calls, and the results of all comparisons.
– Determines the new relative PCB number each time a PCB change occurs

while the application program is executing.
Comments statement

The image capture program also produces a comments statement when you
invoke it. The comments statements give:
– The time and date IMS started the trace
– The name of the PSB being traced
The image capture program also produces a comments statement preceding any
call in which IMS finds an error.
Call statements

The image capture program produces a call statement for each DL/I call or
EXEC DLI command the application program issues. It also generates a CHKP
call when it starts the trace and after each commit point or CHKP request.
Compare statements

If you specify COMP on the DLITRACE control statement, the image capture
program produces data and PCB comparison statements.

Running Image Capture Online
This section applies to a CICS (or CCTL) online program (running in the DBCTL
environment only) or BMP programs (DBCTL environment). When you run the
image capture program online, the trace output goes to the IMS log data set. To
run the image capture program online, you issue the IMS TRACE command from the
z/OS console.

If you trace a BMP and you want to use the trace results with DFSDDLT0, the
BMP must have exclusive write access to the databases it processes. If the
application program does not have exclusive access, the results of DFSDDLT0 may
differ from the results of the application program.

The following diagram shows TRACE command format:

�� / TRACE SET
ON
OFF PSB psbname

NOCOMP
COMP

��

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one
PSB at the same time, by issuing a separate TRACE command for each PSB.

Testing Your CICS Program

168 Application Programming: Design Guide



COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB compare statements to be used with DFSDDLT0.

Running Image Capture in Batch
This section applies to batch programs. To run the image capture program as a
batch job, you use the DLITRACE control statement in the DFSVSAMP DD data
set. In the DLITRACE control statement you specify:
v Whether you want to trace all of the DL/I calls the program issues or trace only

a certain group of calls.
v Whether you want the trace output to go to:

– A sequential data set that you specify
– The IMS log data set
– Both sequential and IMS log data sets

The format of the DLITRACE control statement is:

�� DLITRACE
NO

LOG= YES
DFSTROUT

,DDNAME= anyname
0

,START= n

�

�
7FFFFFFF

,STOP= n
NOCOMP

, COMP

��

DLITRACE
Invokes the trace. If this is the only parameter you specify, IMS uses default
values for the remaining parameters.

LOG = YES|NO
Specifies whether you want IMS to route trace output to the IMS log.

DDNAME = anyname|DFSTROUT
Specifies the ddname of the sequential data set to which you want trace output
sent. The default is DFSTROUT; but if you specify LOG = YES, and you do not
supply a value for the DDNAME parameter, IMS does not try to open the data
set defined by DFSTROUT.

START = n|0
Gives the number of the first Dl/I call in the program that you want traced.
The value is a one- to eight-character hexadecimal number. If you do not
supply a value, the trace starts with the first DL/I call in the program.

STOP = n|7FFFFFFF
Specifies the number of the last DL/I call in the program that you want traced.
The value is a one- to eight-character hexadecimal number.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB comparison statements to be used as input to the DFSDDLT0 test
program. NOCOMP is the default.

Notes:

1. DLITRACE must begin in column 1; the remainder of the parameters are
nonpositional.

2. Each parameter may be used only once in the control statement.

Testing Your CICS Program

Chapter 10. Testing a CICS Application Program 169



3. Only one trace control statement is allowed for a program.

Example of DLITRACE
This example shows a DLITRACE control statement that:
v Traces the first 14 DL/I calls or commands that the program issues
v Sends the output to the IMS log data set
v Produces data and PCB comparison statements for DFSDDLT0
//DFSVSAMP DD *
DLITRACE LOG=YES,STOP=14,COMP
/*

Special JCL Requirements
The following are special JCL requirements:

//IEFRDER DD
If you want log data set output, this DD statement is required to define the
IMS log data set.

//DFSTROUT DD|anyname
If you want sequential data set output, this DD statement is required to define
that data set. If you want to specify an alternate DDNAME (anyname), it must
be specified using the DDNAME parameter on the DLITRACE control
statement.

The DCB parameters on the JCL statement are not required. The data set
characteristics are:
v RECFM=F
v LRECL=80

Notes on Using Image Capture
v If the program being traced issues CHKP and XRST calls, the checkpoint and

restart information may not be directly reproducible when you use the trace
output with the DFSDDLT0.

v When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace
output, the results are the same as the application program's results provided
the database has not been altered.

Retrieving Image Capture Data from the Log Data Set
If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERA50
deblocks, formats, and numbers the image capture program records to be retrieved.
To use DFSERA50, you must insert a DD statement defining a sequential output
data set in the DFSERA10 input stream. The default ddname for this DD statement
is TRCPUNCH. The card must specify BLKSIZE=80.

Examples: You can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:
v Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

v Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

Testing Your CICS Program

170 Application Programming: Design Guide



v Format image capture program records (in a format that can be used as input
to DFSDDLT0):
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C

VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

The DDNAME= parameter is used to name the DD statement used by DFSERA50.
The data set defined on the OUTDDN DD statement is used instead of the default
TRCPUNCH DD statement. For this example, the DD appears as:
//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for Monitoring and Debugging Your CICS Program
You can use the following two requests to help you in debugging your program:
v The statistics (STAT) request retrieves database statistics. STAT can be issued from

both call- and command-level programs. See “Retrieving Database Statistics: The
STAT Call” on page 149 for a description of the STAT request.

v The log (LOG) request makes it possible for the application program to write a
record on the system log. You can issue LOG as a command or call in a batch
program; in this case, the record is written to the IMS log. You can issue LOG as a
call or command in an online program in the DBCTL environment; in this case,
the record is written to the DBCTL log. See “Writing Information to the System
Log: The LOG Request” on page 162 for a description of the LOG request.

What to Do When Your CICS Program Terminates Abnormally
Whenever your program terminates abnormally, you can take some actions to
simplify the task of finding and fixing the problem. First, you can record as much
information as possible about the circumstances under which the program
terminated abnormally; and second, you can check for certain initialization and
execution errors.

Recommended Actions after an Abnormal Termination of CICS
Many places have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are some common guidelines:
v Document the error situation to help in investigating and correcting it. Some of

the information that can be helpful is:
– The program's PSB name
– The transaction code that the program was processing (online programs only)
– The text of the input screen being processed (online programs only)
– The call function
– The terminal ID (online programs only)
– The contents of the PCB or the DIB
– The contents of the I/O area when the problem occurred
– If a database request was executing, the SSAs or SEGMENT and WHERE

options, if any, the request used
– The date and time of day

v When your program encounters an error, it can pass all the required error
information to a standard error routine.

Testing Your CICS Program

Chapter 10. Testing a CICS Application Program 171



v An online program might also want to send a message to the master terminal
destination (CSMT) and application terminal operator, giving information about
the program's termination.

v You can send a message to the system log by issuing a LOG request.

Diagnosing an Abnormal Termination of CICS
If your program does not run correctly when you are testing it or when it is
executing, you need to isolate the problem. The problem might be anything from a
programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

CICS Initialization Errors
Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

CICS Execution Errors
If you do not have any initialization errors, check the following in your program:
1. The output from the compiler. Make sure that all error messages have been

resolved.
2. The output from the linkage editor:

v Are all external references resolved?
v Have all necessary modules been included?
v Was the language interface module correctly included?
v Is the correct entry point specified (for batch programs only)?

3. Your JCL:
v Is the information that described the files that contain the databases correct?

If not, check with your DBA.
v Have you included the DL/I parameter statement in the correct format (for

batch programs only)?
v Have you included the region size parameter in the EXEC statement? Does it

specify a region or partition large enough for the storage required for IMS
and your program (for batch programs only)?

4. Your call-level program:
v Have you declared the fields in the PCB masks correctly?
v If your program is an assembler language program, have you saved and

restored registers correctly? Did you save the list of PCB addresses at entry?
Does register 1 point to a parameter list of full words before issuing any
DL/I calls?

v For COBOL and PL/I, are the literals you are using for arguments in DL/I
calls producing the results you expect? For example, in PL/I, is the
parameter count being generated as a half word instead of a fullword, and is
the function code producing the required 4-byte field?

v Use the PCB as much as possible to determine what in your program is
producing incorrect results.

5. Your command-level program:

Abnormal Program Termination

172 Application Programming: Design Guide



v Did you use the FROM option with your ISRT or REPL command? If not, data
will not be transferred to the database.

v Check translator messages for errors.

Abnormal Program Termination

Chapter 10. Testing a CICS Application Program 173



Abnormal Program Termination

174 Application Programming: Design Guide



Chapter 11. Testing an ODBA Application Program

This chapter tells you what is involved in testing an ODBA application program as
a unit and gives you some suggestions on how to do testing. This stage of testing
is called program unit test. The purpose of program unit test is to test each
application program as a single unit to ensure that the program correctly handles
its input data, processing, and output data. The amount and type of testing you do
depends on the individual program. Though strict rules for testing are not
available, the guidelines provided in this section might be helpful.

The following topics provide additional information:
v “Using the DL/I Test Program (DFSDDLT0) Before Testing Your ODBA

Program” on page 176
v “Tracing DL/I Calls with Image Capture to Test Your ODBA Program” on page

176
v “Using Image Capture with DFSDDLT0 to Test Your ODBA Program” on page

176
v “Running Image Capture Online” on page 177
v “Retrieving Image Capture Data from the Log Data Set” on page 177
v “Requests for Monitoring and Debugging Your ODBA Program” on page 178
v “What to Do When Your ODBA Program Terminates Abnormally” on page 178

Be aware of your established test procedures before you start to test your program.
To begin testing, you need the following items:
v A test JCL statement
v A test database

Always begin testing programs against test-only databases. Do not test programs
against production databases. If the program is faulty it might damage or delete
critical data.

v Test input data
The input data that you use need not be current, but it should be valid data. You
cannot be sure that your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter. To thoroughly test the program,
try to test as many of the paths that the program can take as possible. For
example:

Test each path in the program by using input data that forces the program to
execute each of its branches. Be sure that your program tests its error routines.
Again, use input data that will force the program to test as many error conditions
as possible. Test the editing routines your program uses. Give the program as
many different data combinations as possible to make sure it correctly edits its
input data. Table 23 lists the tools you can use to test Online (IMSDB), Batch, and
BMP programs.

Table 23. Tools You Can Use for Testing Your Program

Tool Online (IMS DB) Batch BMP

DFSDDLT0 No Yes¹ Yes

© Copyright IBM Corp. 1974, 2011 175

|

|
|

|
|

|
|

|

|

|

|

|
|

|

|

|
|
|

|

|
|



Table 23. Tools You Can Use for Testing Your Program (continued)

Tool Online (IMS DB) Batch BMP

DL/I Image Capture
Program

Yes Yes Yes

Note: 1. For call-level programs only. (For a command-level batch program, you can use
DL/I image capture program first, to produce calls for DFSDDLT0).

Using the DL/I Test Program (DFSDDLT0) Before Testing Your ODBA
Program

See “Testing DL/I Call Sequences (DFSDDLT0) Before Testing Your IMS Program”
on page 143 for a description of DFSDDLT0. DFSDDLT0 can be used for testing
batch or BMP programs.

Tracing DL/I Calls with Image Capture to Test Your ODBA Program
The DL/I image capture program (DFSDLTR0) is a trace program that can trace
and record DL/I calls issued by batch, BMP, and online (IMS DB environment)
programs. You can produce calls for use as input to DFSDDLT0. You can use the
image capture program to:
v Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.

v Produce input for DFSDDLT0 (DL/I test program)
You can use the output produced by the image capture program as input to
DFSDDLT0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLT0. For
example, you can use the image capture program with a ODBA application, to
produce calls for DFSDDLT0.

v Debug your program
When your program terminates abnormally, you can rerun the program using
the image capture program. The image capture program can then reproduce and
document the conditions that led to the program failure. You can use the
information in the report produced by the image capture program to find and
fix the problem.

Using Image Capture with DFSDDLT0 to Test Your ODBA Program
The image capture program produces the following control statements that you can
use as input to DFSDDLT0:
v Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:
– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I

calls, and the results of all comparisons
– Determines the new relative PCB number each time a PCB change occurs

while the application program is running
v Comments statement

176 Application Programming: Design Guide



The image capture program also produces a comments statement when you run
it. The comments statements give:

The time and date IMS started the trace
The name of the PSB being traced

The image capture program also produces a comments statement preceding any
call in which IMS finds an error.

v Call statements
The image capture program produces a call statement for each DL/I call.

v Compare statements
If you specify COMP on the DLITRACE control statement, the image capture
program produces data and PCB comparison statements.

Running Image Capture Online
This section applies to a CICS (or CCTL) online program (running in the IMS DB
environment only) or BMP programs (IMS DB environment). When you run the
image capture program online, the trace output goes to the IMS log data set. To
run the image capture program online, you issue the IMS TRACE command from
the z/OS console. If you trace a BMP and you want to use the trace results with
DFSDDLT0, the BMP must have exclusive write access to the databases it
processes. If the application program does not have exclusive access, the results of
DFSDDLT0 may differ from the results of the application program. The following
diagram shows TRACE command format:

��
ON

/ TRACE SET OFF PSB psbname
NOCOMP
COMP

��

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than
one PSB at the same time by issuing a separate TRACE command for each
PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data
and PCB compare statements to be used with DFSDDLT0.

Retrieving Image Capture Data from the Log Data Set
If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERA50
deblocks, formats, and numbers the image capture program records to be retrieved.
To use DFSERA50, you must insert a DD statement defining a sequential output
data set in the DFSERA10 input stream. The default ddname for this DD statement
is TRCPUNCH. The card must specify BLKSIZE=80.

Examples: You can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:
v Print all image capture program records:

Using Image Capture

Chapter 11. Testing an ODBA Application Program 177



Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

v Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

v Format image capture program records (in a format that can be used as input to
DFSDDLT0):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C

VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

The DDNAME= parameter is used to name the DD statement used by
DFSERA50. The data set defined on the OUTDDN DD statement is used instead
of the default TRCPUNCH DD statement. For this example, the DD appears as:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for Monitoring and Debugging Your ODBA Program
You can use the following two requests to help you in debugging your program:
v The statistics (STAT) request retrieves database statistics. STAT can be issued

from both call- and command-level programs. See “Retrieving Database
Statistics: The STAT Call” on page 149 for a description of the STAT request.

v The log (LOG) request makes it possible for the application program to write a
record on the system log. You can issue LOG as a command or call in a batch
program; in this case, the record is written to the IMS log. You can issue LOG as
a call or command in an online program in the IMS DB environment; in this
case, the record is written to the IMS DB log. See “Writing Information to the
System Log: The LOG Request” on page 162 for a description of the LOG
request.

What to Do When Your ODBA Program Terminates Abnormally
Whenever your program terminates abnormally, you can take some actions to
simplify the task of finding and fixing the problem.

First, you can record as much information as possible about the circumstances
under which the program terminated abnormally; and second, you can check for
certain initialization and execution errors.

Recommended Actions after an Abnormal Termination of an
ODBA Program

Many shops have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are some common guidelines:
v Document the error situation to help in investigating and correcting it. Some of

the information that can be helpful is:
– The program's PSB name
– The call function
– The terminal ID (online programs only)
– The contents of the PCB or the DIB
– The contents of the I/O area when the problem occurred

Retrieving Image Capture Data from the Log Data Set

178 Application Programming: Design Guide



– If a database request was executing, the SSAs or SEGMENT and WHERE
options, if any, the request used

– The date and time of day
v When your program encounters an error, it can pass all the required error

information to a standard error routine.
v You can send a message to the system log by issuing a LOG request.

Diagnosing an Abnormal Termination of an ODBA Program
If your program does not run correctly when you are testing it or when it is
running, you need to isolate the problem. The problem might be anything from a
programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

ODBA Initialization Errors
Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

ODBA Running Errors
If you do not have any initialization errors, check the following in your program:
1. The output from the compiler. Make sure that all error messages have been

resolved.
2. The output from the linkage editor:

v Are all external references resolved?
v Have all necessary modules been included?
v Was the language interface module correctly included?

3. Your JCL. Is the information that described the files that contain the databases
correct? If not, check with your DBA.

Abnormal Program Termination

Chapter 11. Testing an ODBA Application Program 179



Abnormal Program Termination

180 Application Programming: Design Guide



Chapter 12. Documenting an Application Program

This chapter provides guidelines for program documentation. The purposes for
documenting an application program are described.

The following topics provide additional information:
v “Documentation for Other Programmers”
v “Documentation for Users” on page 182

Many places establish standards for program documentation; make sure you are
aware of your established standards.

Documentation for Other Programmers
Documenting a program is not something you do at the end of the project; your
documentation will be much more complete, and more useful to others if you
record information about the program as you structure and code it. Include any
information that might be useful to someone else who must work with your
program.

The reason you record this information is so that people who maintain your
program know why you chose certain commands, options, call structures, and
command codes. For example, if the DBA were considering reorganizing the
database in some way, information about why your program accesses the data the
way it does would be helpful.

A good place to record information about your program is in a data dictionary.
You can use the DB/DC Data Dictionary, or its successor, DataAtlas (a part of the
IBM VisualGen Team Suite), for this purpose.

Related Reading: For information on how to use these products to document a
data processing environment: the application system, the programs, the programs'
modules, and the IMS system, see
v OS/VS DB/DC Data Dictionary Applications Guide

v Introducing VisualGen or
v VisualGen: Running Applications on MVS

Information you can include for other programmers includes:
v Flowcharts and pseudocode for the program
v Comments about the program from code inspections
v A written description of the program flow
v Information about why you chose the call sequence you did, such as:

– Did you test the call sequence using DFSDDLT0?
– In cases where more than one combination of calls would have had the same

results, why did you choose the sequence you did?
– What was the other sequence? Did you test it using DFSDDLT0?

v Any problems you encountered in structuring or coding the program
v Any problems you had when you tested the program
v Warnings about what should not be changed in the program

© Copyright IBM Corp. 1974, 2011 181



All this information relates to structuring and coding the program. In addition, you
should include the information described in “Documentation for Users” with the
documentation for programmers.

Again, the amount of information you include and the form in which you
document it depend upon you and your application. These documentation
guidelines are provided as suggestions.

Documentation for Users
All the information listed in the “Documentation for Other Programmers” on page
181 relates to the design of the program. In addition to this, you should record
information about how you use the program. The amount of information that users
need and how much of it you should supply depends upon whom the users of the
program are and what type of program it is.

At a minimum, include the following information for those who use your program:
v What one needs in order to use the program, for example:

– For online programs, is there a password?
– For batch programs, what is the required JCL?

v The input that one needs to supply to the program, for example:
– For an MPP, what is the MOD name that must be entered to initially format

the screen?
– For a CICS online program, what is the CICS transaction code that must be

entered? What terminal input is expected?
– For a batch program, is the input in the form of a tape, or a disk data set? Is

the input originally output from a previous job?
v The content and form of the program's output, for example:

– If it is a report, show the format or include a sample listing.
– For an online application program, show what the screen will look like.

v For online programs, if decisions must be made, explain what is involved in
each decision. Present the choices and the defaults.

If the people that will be using your program are unfamiliar with terminals, they
will need a user's guide also. This guide should give explicit instructions on how
to use the terminal and what a user can expect from the program. The guide
should contain discussions of what should be done if the task or program abends,
whether the program should be restarted, or if the database requires recovery.
Although you may not be responsible for providing this kind of information, you
should provide any information that is unique to your application to whomever is
responsible for this kind of information.

Documentation for Other Programmers

182 Application Programming: Design Guide



Chapter 13. Managing the IMS Spool API Overall Design

The IMS Spool API (application programming interface) is an expansion of the IMS
application program interface that allows applications to interface directly to JES
and create print data sets on the job entry subsystem (JES) spool. These print data
sets can then be made available to print managers and spool servers to serve the
needs of the application.

This chapter describes the design of the Spool API and how an application
program uses it.

The following topics provide additional information:
v “The IMS Spool API Design”
v “Sending data to the JES Spool Data Sets” on page 184
v “Spool API Performance Considerations” on page 184
v “Spool API Application Coding Considerations” on page 185

Related Reading: For more information about the Spool API, see:
v IMS Version 9: Application Programming: Transaction Manager

v IMS Version 9: Application Programming: Database Manager

The IMS Spool API Design
The Spool API design provides the application program with the ability to create
print data sets on the JES spool using the standard DL/I call interface. The
functions provided are:

Definition of the data set output characteristics
Allocation of the data set
Insertion of lines of print into the data set
Closing and deallocation of the data set
Backout of uncommitted data within the limits of the JES interface
Assistance in controlling an in-doubt print data set

The Spool API support uses existing DL/I calls to provide data set allocation
information and to place data into the print data set. These calls are:
v The CHNG call. This call is expanded so that print data set characteristics can be

specified for the print data set that will be allocated. The process uses the
alternate PCB as the interface block associated with the print data set.

v The ISRT call. This call is expanded to perform dynamic allocation of the print
data set on the first insert, and to write data to the data set. The data set is
considered in-doubt until the unit of work (UOW) terminates. If possible, the
sync point process deletes all in-doubt data sets for abending units of work and
closes and deallocates data sets for normally terminating units of work.

v The SETO call. This is a call, SETO (Set Options), introduced by this support. Use
this call to create dynamic output text units to be used with the subsequent CHNG
call. If the same output descriptor is used for many print data sets, the overhead
can be reduced by using the SETO call to prebuild the text units necessary for the
dynamic output process.

© Copyright IBM Corp. 1974, 2011 183

|

|

|

|

|



Related Reading: The use of the SETO call is covered in more detail in IMS Version
9: Application Programming: Transaction Manager.

Sending data to the JES Spool Data Sets
Application programs can send data to the JES spool data sets using the same
method that is used to send output to an alternate terminal. Use the DL/I call to
change the output destination to a JES spool data set. Use the DL/I ISRT or PURG
call to insert a message.

The options list parameter on the CHNG and SETO calls contains the data set printer
processing options. These options direct the output to the appropriate Spool API
data set. These options are validated for the DL/I call by the MVSScheduler JCL
Facility (SJF). If the options are invalid, error codes are returned to the application.
To receive the error information, the application program specifies a feedback area
in the CHNG or SETO DL/I call parameter list. If the feedback area is present,
information about the options list error is returned directly to the application.

Spool API Performance Considerations
The Spool API interface uses z/OS services within an IMS application while
minimizing the performance impact of the z/OS services on the other IMS
transactions and services. For this reason, the spool API support places the print
data directly on the JES spool at insert time instead of using the IMS message
queue for intermediate storage. The processing of Spool API requests is performed
under the TCB of the dependent region to ensure maximum usage of N-way
processors. This design reduces the error recovery and JES job orientation
problems.

JES Initiator Considerations
Because the dependent regions are normally long-running jobs, some of the
initiator or job specifications might must be changed if the dependent region is
using the Spool API. You might need to limit the amount of JES spool space used
by the dependent region to contain the dynamic allocation and deallocation
messages. For example, you can use the JOB statement MSGLEVEL to eliminate
the dynamic allocation messages from the job log for the dependent region. You
might be able to eliminate these messages for dependent regions executing as
z/OS started tasks.

Another initiator consideration is the use of the JES job journal for the dependent
region. If the job step has a journal associated with it, the information for z/OS
checkpoint restart is recorded in the journal. Because IMS dependent regions
cannot use z/OS checkpoint restart, specify JOURNAL=NO for the JES2 initiator
procedure and the JES3 class associated with the dependent regions execution
class. You can also specify the JOURNAL= on the JES3 //*MAIN statement for
dependent regions executing as jobs.

Application Managed Text Units
The application can manage the dynamic descriptor text units instead of IMS. If
the application manages the text units, overhead for parsing and text unit build
can be reduced. Use the SETO call to have IMS build dynamic descriptor text units.
After they are built, these text units can be used with subsequent CHNG calls to
define the print characteristics for a data set.

The IMS Spool API Design

184 Application Programming: Design Guide



To reduce overhead by managing the text units, the text units should be used with
several change calls. An example of this is a wait-for-input (WFI) transaction. The
same data set attributes can be used for all print data sets. For the first message
processed, the application uses the SETO call to build the text units for dynamic
descriptors and a subsequent CHNG call with the TXTU= parameter referencing the
prebuilt text units. For all subsequent messages, only a CHNG call using the prebuilt
text units is necessary.

Be aware of the following: No testing has been done to determine the amount of
overhead that might be saved using prebuilt text units.

BSAM I/O Area
The I/O area for spool messages can be very large. It is not uncommon for the
area to be 32 KB in length. To reduce the overhead incurred with moving large
buffers, IMS attempts to write to the spool data set from the application's I/O area.
BSAM does not support I/O areas in 31-bit storage for SYSOUT files. If IMS finds
that the application's I/O area is in 31-bit storage:
v A work area is obtained from 24-bit storage.
v The application's I/O area is moved to the work area.
v The spool data set is written from the work area.

If the application's I/O area can easily be placed in 24-bit storage, the need to
move the I/O area can be avoided and possible performance improvements
achieved.

Be aware of the following: No testing has been done to determine the amount of
performance improvement possible.

Since a record can be written by BSAM directly from the application's I/O area, the
area must be in the format expected by BSAM. The format must contain:
v Variable length records
v A Block Descriptor Word (BDW)
v A Record Descriptor Word (RDW)

Related Reading: For more information on the formats of the BDW and RDW, see
MVS/XA Data Administration Guide. The format of the I/O area is described in
more familiar IMS terms in IMS Version 9: Application Programming: Transaction
Manager.

Spool API Application Coding Considerations
Your application can send data to a JES Spool or Print server using a print data set.
This section describes this process and includes options for message integrity and
recovering data when failures occur.

Print Data Formats
The IMS Spool API attempts to provide a transparent interface for the application
to insert data to the JES spool. The data can be in line, page, IPDS, AFPDS, or any
format that can be handled by a JES Spool or Print server that processes the print
data set. The IMS Spool API does not translate or otherwise modify the data
inserted to the JES spool.

Performance Considerations

Chapter 13. Managing the IMS Spool API Overall Design 185



Message Integrity Options
The IMS Spool API provides support for message integrity. This is necessary
because IMS cannot properly control the disposition of a print data set when:
v IMS abnormal termination does not execute because of a hardware or software

problem.
v A dynamic deallocation error exists for a print data set.
v Logic errors are in the IMS code.

In these conditions, IMS might not be able to stop the JES subsystem from printing
partial print data sets. Also, the JES subsystems do not support a two-phase sync
point.

Print Disposition
The most common applications using Advanced Function Printing (AFP) are TSO
users and batch jobs. If any of these applications are creating print data sets when
a failure occurs, the partial print data sets will probably print and be handled in a
manual fashion. Many IMS applications creating print data sets can manage partial
print data sets in the same manner. For those applications that need more control
over the automatic printing by JES of partial print data sets, the IMS Spool API
provides the following integrity options. However, these options alone might not
guarantee the proper disposition of partial print data sets. These options are the b
variable following the IAFP keyword used with the CHNG call.

b=0
Indicates no data set protection

This is probably the most common option. When this option is selected, IMS
does not do any special handling during allocation or deallocation of the print
data set. If this option is selected, and any condition occurs that prevents IMS
from properly disposing the print data set, the partial data set probably prints
and must be controlled manually.

b=1
Indicates SYSOUT HOLD protection

This option ensures that a partial print data set is not released for printing
without a JES operator taking direct action. When the data set is allocated, the
allocation request indicates to JES that this print data set be placed in SYSOUT
HOLD status. The SYSOUT HOLD status is maintained for this data set if IMS
cannot deallocate the data set for any reason. Because the print data set is in
HOLD status, a JES operator must identify the partial data set and issue the
JES commands to delete or print this data set.

If the print data set cannot be deleted or printed:
v Message DFS0012I is issued when a print data set cannot be deallocated.
v Message DFS0014I is issued during IMS emergency restart when an in-doubt

print data set is found. The message provides information to help the JES
operator find the proper print data set and effect the proper print
disposition.
Some of the information includes:
– JOBNAME
– DSNAME
– DDNAME
– A recommendation on what IMS believes to be the proper disposition for

the data set (for example, printing or deleting).

Application Coding Considerations

186 Application Programming: Design Guide



By using the Spool Display and Search Facility (SDSF), you can display the
held data sets, identify the in-doubt print data set by DDNAME and
DSNAME, and issue the proper JES command to either delete or release the
print data set.

b=2
Indicates a nonselectable destination

This option prevents the automatic printing of partial print data sets. The IMS
Spool API function requests a remote destination of IMSTEMP for the data set
when the data set is allocated. The JES system must have a remote destination
of IMSTEMP defined so that JES does not attempt to print any data sets that
are sent to the destination.

If b=2, the name of the remote destination for the print data set must be
specified in the destination name field of the call parameter list when the CHNG
call is issued. When IMS deallocates the data set at sync point, and the data set
prints, IMS requests that the data set be transferred to the requested final
remote destination.

If the remote destination is not defined to the JES system, a dynamic allocation
failure occurs. Because this remote destination is defined as nonselectable, and
if IMS is unable to deallocate the print data set and control its proper
disposition, the print data set remains associated with remote destination
IMSTEMP when deallocated by z/OS.

When an deallocation error occurs, message DFS0012I is issued to provide
details of the deallocation error and help identify the print data set that
requires operator action. When partial print data sets are left on this special
remote destination, the JES operator can display all the print data sets
associated with this JES destination to locate the data set that requires action.
The b=2 option simplifies the operator's task of locating partial print data sets.

Message Options
The third option on the IAPF keyword controls informational messages issued by
the IMS Spool API support. These messages inform the JES operator of in-doubt
data sets that need action.

c=0
Indicates that no DFS0012I or DFS0014I messages are issued for the print data
set. You can specify c=0 only if b=0 is specified.

c=m
Indicates that DFS0012I and DFS0014I messages are issued if necessary. You
can specify c=m or if b=1 or if b=2, it is the default.

Option c does not affect issuing message DFS0013E.

IMS Emergency Restart: When IMS emergency restart is performed, DFS0014I
messages might be issued if IMS finds that the proper disposition of a print data
set is in-doubt, as a result of the restart. This message is only issued if the message
option for the print data set was requested or c=m on the IAFP variable. When a
DFS0014I message is received, a JES operator might need to find and properly
dispose of the print data set. The DFS0014I message provides a recommended
disposition (that is, deletion or printing).

Destination Name (LTERM) usage
The standard CHNG call parameter list contains a destination name field. For
traditional message calls, this field contains the LTERM or transaction code that

Application Coding Considerations

Chapter 13. Managing the IMS Spool API Overall Design 187



becomes the destination of messages sent via this alternate PCB. When ISRT calls
are issued against the PCB, the data is sent to the LTERM or transaction.

However, the destination name field has no meaning to the IMS Spool API
function unless b=2 is specified following the IAFP keyword.

When b=2 is specified:
v The name must be a valid remote destination supported by the JES system that

receives the print data sets.
v If the name is not a valid remote destination, an error occurs during dynamic

deallocation.

If any option other than 2 is selected, the name is not used by IMS.

The LTERM name appears in error messages and log records. Use a name that
identifies the routine creating the print data set. This information can aid in
debugging application program errors.

Application Coding Considerations

188 Application Programming: Design Guide



Appendix. IVP Sample Application

The IVP sample application is a very simple phone book application. Each of the
application programs performs the same add, change, delete, and display
functions. The source for the IVP sample application is in the IMS.SDFSISRC
(SMP/E target) library. Two programs are provided in several different languages.
The two programs are:

DFSIVA3
A conversational MPP that accesses an HDAM/VSAM database.
Transaction input and output is through MFS screens.

DFSIVA6
A batch or BMP program that accesses a HIDAM/OSAM database. The
program uses GSAM to receive its transaction input and to display its
transaction output.

These programs are fully installed and executed by the IVP.

The IMS EXEC library also includes the REXX EXEC named DFSSUT04 EXEC. Use
this EXEC to process any unexpected return codes or status codes.

Related Reading: A full description of the IVP sample application is in IMS Version
9: Installation Volume 1: Installation Verification. For information about the IVP
sample applications in Java, see IMS Version 9: IMS Java Guide and Reference.

© Copyright IBM Corp. 1974, 2011 189

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|



190 Application Programming: Design Guide



Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1974, 2011 191



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

192 Application Programming: Design Guide



programs are provided "AS IS," without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This book is intended to help the programmer design application programs. This
book primarily documents General-use Programming Interface and Associated
Guidance Information provided by IMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information and Diagnosis, Modification or Tuning
Information provided by IMS.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of IMS. Use of such interfaces creates dependencies on the detailed design
or implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed to run with new
product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

Diagnosis, Modification or Tuning Information is provided to help the programmer
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of IMS.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either
by an introductory statement to a chapter or section or by the following marking:

Notices 193



Product-sensitive programming interface

Diagnosis, Modification or Tuning Information...

End of Product-sensitive programming interface

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web in the topic “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies,
and have been used at least once in the IMS library:
v Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

v Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

v Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other product and service names might be trademarks of IBM or other companies.

194 Application Programming: Design Guide



Bibliography

This bibliography lists all of the information in
the IMS Version 9 library.

BTS Program Reference/Operations Manual,
SH20-5523
IMS Batch Terminal Simulator for z/OS: User's
Guide and Reference, SC18–7149
CICS Application Programming Guide, SC34-5993
CICS Application Programming Reference,
SC34-5994
CICS IMS Database Control Guide, SC34-6010
CICS Transaction Server for z/OS Version 2.2
Information Center, SK3T-6945
CICS Messages and Codes, GC34-6003
CICS Recovery and Restart Guide, SC34-6008
Common Programming Interface Communications
Reference, SC26-4399
DB2 UDB for z/OS and OS/390 Application
Programming and SQL Guide, SC26-9933
VisualGen V2R0.0 Introducing, GH23-6570
MVS/XA Data Administration Guide, GC26-4140
Enterprise PL/I for z/OS and OS/390
Programming Guide, SC27-1457
OS/VS DB/DC Data Dictionary Applications
Guide, SH20-9190
Systems Network Architecture: LU 6.2 Reference:
Peer Protocols, SC31-6808
Systems Network Architecture: Transaction
Programmer's Reference Manual for LU Type 6.2,
GC30-3084
VisualGen: Running Applications on MVS,
SH23-6550
SAA CPI Resource Recovery Reference, SC31-6821

IMS Version 9 Library

Title Acronym Order
number

IMS Version 9: Administration
Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration
Guide: System

AS SC18-7807

IMS Version 9: Administration
Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application
Programming: Database
Manager

APDB SC18-7809

Title Acronym Order
number

IMS Version 9: Application
Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application
Programming: EXEC DLI
Commands for CICS and IMS

APCICS SC18-7811

IMS Version 9: Application
Programming: Transaction
Manager

APTM SC18-7812

IMS Version 9: Base Primitive
Environment Guide and
Reference

BPE SC18-7813

IMS Version 9: Command
Reference

CR SC18-7814

IMS Version 9: Common Queue
Server Guide and Reference

CQS SC18-7815

IMS Version 9: Common
Service Layer Guide and
Reference

CSL SC18-7816

IMS Version 9: Customization
Guide

CG SC18-7817

IMS Version 9: Database
Recovery Control (DBRC)
Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis
Guide and Reference

DGR LY37-3203

IMS Version 9: Failure Analysis
Structure Tables (FAST) for
Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect
Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java Guide
and Reference

JGR SC18-7821

IMS Version 9: Installation
Volume 1: Installation
Verification

IIV GC18-7822

IMS Version 9: Installation
Volume 2: System Definition
and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index
and Glossary

MIG SC18-7826

IMS Version 9: Messages and
Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages and
Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open
Transaction Manager Access
Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations
Guide

OG SC18-7830

IMS Version 9: Release
Planning Guide

RPG GC17-7831

© Copyright IBM Corp. 1974, 2011 195



Title Acronym Order
number

IMS Version 9: Summary of
Commands

SOC SC18-7832

IMS Version 9: Utilities
Reference: Database and
Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities
Reference: System

URS SC18-7834

Supplementary Publications

Title Order number
IMS TM Resource Adapter User's Guide
and Reference

SC19-1211

IMS Version 9 Fact Sheet GC18-7697
IMS Version 9: Licensed Program
Specifications

GC18-7825

IRLM Messages and Codes GC19-2666

Publication Collections

Title Format Order
number

IMS Version 9 Softcopy Library CD LK3T-7213
Licensed Bill of Forms (LBOF):
IMS Version 9 Hardcopy and
Softcopy Library

Hardcopy
and CD

LBOF-7789

Unlicensed Bill of Forms
(SBOF): IMS Version 9
Unlicensed Hardcopy Library

Hardcopy SBOF-7790

z/OS and Software Products
DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This
Library

Title Order number
z/OS V1R1.0 TSO Primer SA22-7787
z/OS V1R5.0 TSO/E User’s Guide SA22-7794
z/OS V1R5.0 ISPF User’s Guide,
Volume 1

SC34-4822

196 Application Programming: Design Guide



Index

A
abend codes

pseudo- 47
S201 138
U0069 49
U0777 41
U1008 45
U119 129
U2478 41
U2479 41
U261 138
U3301 45
U3303 41
U476 138
U711 99, 130

access methods
DEDB 74
descriptions 69
GSAM 76
HDAM 71
HIDAM 72
HISAM 75
HSAM 75
MSDB 73
PHDAM 69, 71
PHIDAM 69, 72
SHISAM 76
SHSAM 76

access of
IMS databases through z/OS 76
segments through different paths 82

Advanced Function Printing (AFP) 186
AFPDS and IMS Spool API 185
aggregates, data 16
AIB interface 6
AIBTDLI interface 49
allocations, dynamic 49
alternate PCBs 101
alternate response PCBs 101
analysis of

processing requirements 29
required application data 11
user requirements 9

anchor point, root 71
API (application programming interface)

for LU 6.2 devices
explicit API 115
implicit API 114

APPC
application program types for LU 6.2

devices 106
APSB (allocate program specification

block) 139
conversations 108
description 105
DPSB (deallocate program

specification block) 140
LU 6.2 partner program design

DFSAPPC message switches 135
flow diagrams 115, 126

APPC (continued)
LU 6.2 partner program design

(continued)
integrity after conversation

completion 133
mapped conversations 108
RRS/MVS 137

application data
analyzing required 11
identifying 11

application design 9
analyzing

data a program must access 53
processing requirements 51
user requirements 9, 11

data dictionaries, using 15
DataAtlas 15
DB/DC Data Dictionary 15
debugging 188
designing local views 16
documenting 10
Spool API interface 183

application designs
documenting 182

application programming interface
(API) 114

application programs 111
documentation 182
test 143, 165
TSO 42

APSB (allocate program specification
block) 115, 139

area, I/O 6
associations, data 3
asynchronous conversations, description

for LU 6.2 transactions 108
AUTH call 94
authorization

ID, DB2 UDB for z/OS 94
security 94

availability of data 5, 46, 65

B
back-out database changes 64
backouts dynamic 34
basic edit 96
Batch Backout utility 34
batch environments 31
batch message processing program.

See BMP (batch message processing)
program

batch programs
converting to BMPs 37, 57
databases that can be accessed 30, 53
DB batch processing 33
descriptions 56
differences from online 33, 56
I/O PCB, requesting during

PSBGEN 62
issuing checkpoints 46, 62

batch programs (continued)
recovery 34, 61
recovery of databases 64

Batch Terminal Simulator II (IMS Batch
Terminal Simulator for z/OS) 144

batch-oriented BMPs. 38
BKO execution parameter 34
block descriptor word (BDW), IMS Spool

API 185
BMP (batch message processing)

program 38
batch-oriented 38

checkpoints in 45, 62
converting batch programs to

BMPs 57
databases that can be accessed 36,

58
description of 36, 57
limiting number of locks with

LOCKMAX= parameter 45
recovery 37, 58

databases that can be accessed 31, 53
transaction-oriented

checkpoints in 44
databases that can be accessed 38
recovery 39

buffer pool, STAT call and OSAM 150
buffer subpool, statistics for debugging

enhanced STAT call and
OSAM 154
VSAM 151, 159

C
C/MVS 49
CALL statement (DL/I test

program) 144
call-level programs, scheduling a PSB 59
calls, DL/I 6
CCTL (coordinator controller)

image capture 168
restrictions

DL/I test program 144
IMS Batch Terminal Simulator for

z/OS (Batch Terminal Simulator
II) 144

problem resolution 163
checkpoints 43, 63, 65

basic 43
batch programs 46
batch-oriented BMPs 64
calls 44
frequency, specifying 46, 63
IDs 63
in batch programs 63
in batch-oriented BMPs 45
in MPPs 44
issuing 33
printing log records 64
restart 45, 65
summary 43

© Copyright IBM Corp. 1974, 2011 197



checkpoints (continued)
symbolic 43
transaction-oriented BMPs 44

CHKP (checkpoint) 43
CHKPT=EOV 44
CHNG system service calls 183
CICS 6

distributed transactions, accessing
IMS 60

CICS dump control 167
CICS transactions

accessing IMS 60
CIMS 138
classes schedule, examples 23
CMPAT=YES PSB specification 33
COBOL 49
codes

course 12
transactions 35

codes abend 41
commands, EXEC DLI 6
COMMENTS statement 144
commit points 33, 40, 63
COMPARE statements 144
comparison of symbolic CHKP and basic

CHKP 43
concurrent accessing

full-function databases 33
considerations in screen design 97
CONTINUE-WITH-TERMINATION

indicator 49
continuing a conversation 99
controls, passing processing 6
conventions, naming 9
conversation attributes

asynchronous 108
MSC synchronous and

asynchronous 108
synchronous 107

conversation state, rules for APPC
verbs 109

conversational modes
description 102
LU 6.2 transactions 107

conversational processing
abnormal termination

precautions 100
alternate response PCBs 102
continuing the conversation 99
deferred program switches 99
deferred program switches to end the

conversation 99
designing a conversation 98
DFSCONE0 100
ending conversations 99
gathering requirements 98
immediate program switches 99
passing conversations to other

programs 99
recovery considerations 100
SPA 99
what happens in a conversation 98

conversations, APPC 108
conversations, preventing abnormal

termination 100
converting existing applications 11

coordinator controller.
See CCTL (coordinator controller)

coordinator, sync-point 111
course codes 12
CPI Communications driven application

programs for LU 6.2 devices 106
creation of

new hierarchies 82
reports 16

currency of data 2, 3

D
data

aggregates 16
associations 3
documentation 14
elements, homonyms 14
elements, isolating repeating 17
elements, naming 13
hierarchical relationships 3
keys 20
recording its availability 15
relationships, analyzing 16
structuring 16
unique identifier 14
view from program 4

data availability
considerations 46, 65
levels 5
recording 15

data currency 2, 3
data definitions 10
data dictionaries

DataAtlas 15, 181
DB/DC Data Dictionary 15, 181
documentation for other

programmers 181
in application design 15

data elements
descriptions 11
homonyms 14
isolating repeating 17
listing 12
naming 13
synonym 13

data elements, grouping into
hierarchies 16

data entities 11
data entry databases 32
data integrity

DL/I protection 61
data masks 6
data redundancies 1
data sensitivities 4
data sensitivities, defined 85
data storage methods

combined files 2
databases 2
separate files 1

data structure conflicts, resolving 77
data structures 5
DataAtlas 15, 16, 181
database

changes, backing out 64
description (DBD) 4
hierarchies 3

database (continued)
options 69
recovery 62
unavailability 46

DATABASE macro 90
database records 4
database recovery

backing out database changes 64
checkpoints, description 62
restarting your program,

descriptions 65
Database Resource Adapter (DRA) 137
database statistics, retrieving 149
database structure

physical 4
database types

areas 32
DB2 UDB for z/OS 32, 54
DEDB 32, 74
description 32
Fast Path 31
full-function 31
GSAM 32, 76
HDAM 71, 72
HISAM 75
HSAM 75
MSDB 32, 73
PHDAM 69, 71
PHIDAM 69, 72
relational 32
root-segment-only 32
SHISAM 76
SHSAM 76

databases
accessing 53
record, processing 6
unavailability 65

databases and data communications
security 10

DB batch processing 33
DB Control

DRA (Database Resource
Adapter) 139

DB Control DRA (Database Resource
Adapter) 137

DB PCB (database program
communication block) 4

DB/DC
Data Dictionary 15, 181
environment 31

DB2 UDB for z/OS
databases 32, 54
security 94

DBASF, formatted OSAM buffer pool
statistics 150

DBASS, formatted summary of OSAM
buffer pool statistics 151

DBASU, unformatted OSAM buffer pool
statistics 151

DBCTL environment 31, 53
DBCTLID parameter 139
DBD (database description) 4
DBESF, formatted OSAM subpool

statistics 154
DBESO, formatted OSAM pool online

statistics 157

198 Application Programming: Design Guide



DBESS, formatted summary of OSAM
pool statistics 156

DBESU, unformatted OSAM subpool
statistics 156

DCCTL environment 31
deadlocks, program 34
debugging a program 163, 171
DEDB (data entry databases) 74
DEDB (data entry databases) and the

PROCOPT operand 89
deferred program switches 99
definition

dependent segments 4
root segments 4

definitions
data 10

dependent segments 4
dependents

direct 32
sequential 32

description, segments 3
designing

applications 9
conversations 98
local views 16
terminal screen 97

determination of mappings 21
device input format (DIF), control

block 96
device output format (DOF), control

block 96
DFSAPPC message switch 135
DFSCONE0 (Conversational Abnormal

Termination exit routine) 100
DFSDDLT0 (DL/I test program) 143
DFSDLTR0 (DL/I image capture).

See DL/I image capture (DFSDLTR0)
programs

DFSERA10 utility 170
DFSERA50 exit routine 170
DFSMDA macro 49
DIB (DLI interface block) 6
dictionaries, data 15
DIF (device input format), control

block 96
direct access methods

characteristics 70
HDAM 71
HIDAM 72
PHDAM 69, 71
PHIDAM 69, 72
types of 70

direct dependents 32
distributed commit calls

ATRBACK 140
ATRCMIT 140
RRS/MVS 140
SRRBACK 140
SRRCMIT 140

Distributed Sync Point 110
DL/I access methods

considerations in choosing 69
DEDB 74
direct access 70
GSAM 76
HDAM 71
HIDAM 72

DL/I access methods (continued)
HISAM 75
HSAM 75
MSDB 73
PHDAM 69, 71
PHIDAM 69, 72
sequential access 74
SHISAM 76
SHSAM 76

DL/I call trace 144
DL/I calls 6
DL/I calls, testing DL/I call

sequences 143, 167
DL/I databases

accessing 53
descriptions 54

DL/I image capture (DFSDLTR0)
programs 167

DL/I options
field level sensitivities 77
logical relationships 82
secondary indexing 78

DL/I test program (DFSDDLT0)
call statements 144
checking program performance 144
comments statements 144
compare statements 144
control statements 144
description 144
status statements 144
testing DL/I call sequences 167

DL/I test programs (DFSDDLT0)
testing DL/I call sequences 143

DLITRACE control statement 168
documentation for users 182
documentation of

data 14
the application design process 10

DOF (device output format), control
block 96

DPSB (deallocate program specification
block) 140

DRA (Database Resource Adapter)
descriptions 137
startup table 139

dump control, CICS 167
duplicate values, isolating 19
dynamic allocations 49, 68
dynamic backouts 34

E
EBCDIC 63
EDF (Execution Diagnostic Facility) 166
editing

considerations in your application 96
messages 95

considerations in message and
screen design 96

elements
data, description 11
data, naming 13

emergency restart 187
EMH (expedited message handler) 36
ending conversations 99
enhanced STAT call formats for statistics

OSAM buffer subpool 154

enhanced STAT call formats for statistics
(continued)

VSAM buffer subpool 159
entities, data 11
environments

DB/DC 31
DBCTL 31
DCCTL 31
options in 31, 53
program and database types 30

ERASE parameter 88
error

execution 164, 172
initialization 163, 172

ESTAE routines 48
example

current roster 12
field level sensitivities 77
instructor schedules 25
local views 22
logical relationships 82

examples
instructor skills report 24
schedule of classes 23

EXEC DLI commands 6
Execution Diagnostic Facility (EDF) 166
execution errors 164, 172
existing applications, converting 11
explicit API for LU 6.2 devices 115
express PCBs 103
Extended Restart 43, 65

F
Fast Path

databases 32
DEDB (data entry databases) 74
DEDB and the PROCOPT

operand 89
IFPs 35
MSDB (main storage database) 73
MSDB (main storage databases) 32

field level sensitivities 78
defining 6
descriptions 77
example 77
security mechanisms 87
specifying 78

File Select and Formatting Print Program
(DFSERA10) 44

flow diagrams, LU 6.2
CPI-C driven commit scenario 128
DFSAPPC, synchronous

SL=none 122
DL/I program backout scenario 129,

130
DL/I program commit scenario 127
DL/I program ROLB scenario 130
local CPI communications driven

program, SL=none 122
local IMS Command

asynchronous SL=confirm 121
local IMS command, SL=none 121
local IMS conversational transactions,

SL=none 120
local IMS transactions

asynchronous SL=confirm 119

Index 199



flow diagrams, LU 6.2 (continued)
local IMS transactions (continued)

asynchronous SL=none 118
synchronous SL=confirm 117
synchronous SL=none 116

multiple transactions in same
commit 132

remote MSC conversation
asynchronous SL=confirm 125
asynchronous SL=none 124
synchronous SL=confirm 126
synchronous SL=none 123

frequency, checkpoints 46
full-function databases

accessing via CICS 54
accessing via IMS 31
and the PROCOPT operand 89

G
gathering requirements

conversational processing 98
database options 69
message processing options 93

Generalized Sequential Access Method
(GSAM) 76

GO processing option 45
group data elements

keys 20
grouping data elements

hierarchies 16
GSAM (Generalized Sequential Access

Method)
accessing GSAM databases 53
database type 32
descriptions 76

H
HALDB (High Availability Large

Database) 79
HDAM (Hierarchical Direct Access

Method) 71
HIDAM (Hierarchical Indexed Direct

Access Method) 72
Hierarchical Direct Access Method

(HDAM) 71
Hierarchical Indexed Direct Access

Method (HIDAM) 72
Hierarchical Indexed Sequential Access

Method (HISAM) 75
Hierarchical Sequential Access Method

(HSAM) 75
hierarchies

grouping data elements 16
hierarchy

description 3
High Availability Large Database

(HALDB) 79
HISAM (Hierarchical Indexed Sequential

Access Method) 75
homonyms, data elements 14
HSAM (Hierarchical Sequential Access

Method) 75

I
i was

basic 63
symbolic 63

I/O area 6
I/O PCB

environments that are different 55
requesting during PSBGEN 62

identification
recovery requirements 45

identifying
application data 11
online security requirements 93
output message destinations 101
security requirements 85

IDs, checkpoints 63
IFP (IMS Fast Path) program

databases that can be accessed 31
differences from an MPP 36
recovery 36
restrictions 36

image capture programs
CICS application programs 167

image captures program
IMS application programs 145

immediate program switches 99
implicit API for LU 6.2 devices 114
IMS Batch Terminal Simulator for z/OS

(Batch Terminal Simulator II) 144
IMS Fast Path (IFP) programs, description

of 35
INIT system service calls 48
initialization errors 163, 172
INQY system service calls 48
instructors

schedules 25
skills reports 24

integrity
read without 90

interface, AIB 6
Introduction to Resource Recovery 110
invalid processing and

ROLB/SETS/ROLLS calls 100
IPDS and IMS Spool API 185
ISC (Intersystem Communication) 36
isolation of

duplicate values 19
repeating data elements 17

ISRT system service call 183
issue checkpoints 33

J
Java Batch Processing (JBP)

applications 39
databases that can be accessed 31

Java Message Processing (JMP)
applications 39
databases that can be accessed 31

JBP (Java Batch Processing)
applications 39
databases that can be accessed 31

JES Spool/Print server 185
JMP (Java Message Processing)

applications 39
databases that can be accessed 31

JOURNAL parameter 184

K
key sensitivities 87
keys, data 20

L
limit access with signon security 93
linking to another online program 59
LIST parameter 146
listing data elements 12
local views

designing 16
examples 22

locking protocol 88
LOCKMAX= parameter, BMP

programs 45
LOG call

description 162
use in monitoring 171

log records
type 18 64
X’18’ 44

LOG system service call 178
log, system 34
logical relationships

defining 84
description 82
example 82

LTERM, local and remote 135
LU 6.2 devices, signon security 93
LU 6.2 partner program design

DFSAPPC message switch 135
flow diagrams 115
integrity after conversation

completion 133
scenarios 126

M
macros

DATABASE 90
DFSMDA 49
TRANSACT 39

main storage database (MSDB) 73
many-to-many mapping 22
mapped conversation, APPC 109
mappings, determining 21
mask, data 6
message

input descriptor (MID), control
block 96

output descriptor (MOD), control
block 96

outputs 101
processing options 93

methods of data storage
combined files 2
databases 2
separate files 1

MFS (Message Format Service) 96
control blocks 96

MID (message input descriptor), control
block 96

200 Application Programming: Design Guide



MOD (message output descriptor),
control block 96

mode
multiple 44
processing 41
response 101
single 44

MODE parameter 42
MPP (message processing program)

databases that can be accessed 31, 34
descriptions 34
executing 35

MSDB (main storage database) 73
MSDB (main storage databases) 32
multiple mode 41, 44
MVS SJF (Scheduler JCL Facility) 184

N
names of data elements 13
naming conventions 9
NDM (Non-Discardable Messages)

routine 41
network-qualified LU name 136
NOSTAE and NOSPIE 49

O
ODBA

application execution environment
establishing 138, 141

application programs
testing 175
writing 137

APSB (allocate program specification
block) 139

CIMS 138
DB2 UDB for z/OS Stored

Procedures 141
DPSB (deallocate program

specification block) 140
DRA (Database Resource

Adapter) 137, 139
RRS/MVS 137
server program 141

ODBA (Open Database Access) 137
one-to-many mapping 22
online processing

databases that can be accessed 53
descriptions 55
linking and passing control to other

applications 59
performance, maximizing 60

online programs 34
online security

password security 94
supplying information about your

application 95
terminals 94

OSAM buffer pool, retrieving
statistics 150

output messages, identifying destinations
for 101

P
parameters

BKO 34
DBCTLID 139
ERASE 88
JOURNAL 184
LIST 146
LOCKMAX 45
MODE 42
PROCOPT 88
RTRUNC 100
TRANSACT 42
TXTU 185
WFI 39

Partitioned Hierarchical Direct Access
Method (PHDAM) 69, 71

Partitioned Hierarchical Indexed Direct
Access Method (PHIDAM) 69, 72

Partitioned Secondary Index
(PSINDEX) 79

pass control of processing 6
pass control to other applications 59
password security 94, 95
PCB (program communication block)

call 59
description 4
express 103

performance
impact 184
maximizing online 60

PHDAM (Partitioned Hierarchical Direct
Access Method) 69, 71

PHIDAM (Partitioned Hierarchical
Indexed Direct Access Method) 69, 72

physical structure of databases 4
PL/I language 49
position, reestablishing with checkpoint

calls 45, 62
primarily sequential processing 75
printing checkpoint log records 64
problem determinations 163, 172
process database records 6
process of requirements, analyzing 51
processing modes 41
processing options

A (all) 88
D (delete) 88
defined 85
E (exclusive) 89
G (get)

description and concurrent record
access 88

general description 88
GO (read only)

description 89
invalid pointers and T and N

options 89
N option 89
risks of GOx options 89
T option 89

I (insert) 88
K (key) 87
R (replace) 88

processing requests 6
processing requirements, analyzing 29
PROCOPT parameter 88
PROCOPT=GO 44

program communication block (PCB) 4
program deadlocks 34
program sensitivity 47
program specification block (PSB) 4
program switches

deferred 99
immediate 99

program tests 143
program types, environments and

database types 30
program waits 45
programs

DL/I image capture 167
DL/I test 143, 167
online 34
TM batch 34

protected resources 110
protocol, locking 88
PSB (program specification block)

APSB (allocate program specification
block) 115, 139

CMPAT=YES 33
description 4
DPSB (deallocate program

specification block) 140
scheduling call-level programs 59

pseudo-abend 47
PSINDEX (Partitioned Secondary

Index) 79
PURG system service call 184

Q
QC status codes 39
quantitative relationship between data

aggregates 21

R
read access, specifying with PROCOPT

operand 88
read without integrity 90
read-only access, specify with PROCOPT

operand 89
record

database processing 6
database, descriptions of 4

record descriptor word (RDW), IMS
Spool API 185

recording
data availability 15
information about your program 181

recoverable resources 110
recovery

batch-oriented BMPs 58
considerations in conversations 100
I/O PCB, requesting during

PSBGEN 62
identifying requirements 45
in a batch-oriented BMP 37
in batch programs 34

recovery of databases 64
Recovery process

distributed 113
local 112

Recovery, Resource 110

Index 201



redundant data 1
reestablish position in databases 45
relational databases 32
relationships

data aggregates 21
data elements 16
data, hierarchical 3
defining logical 84
mapping data 22

remote DL/I 53
repetitive data elements, isolating 17
replies to terminals in conversations 99
report of instructor schedules 25
reports, creating 16
requests, processing 6
required application data, analyzing 11
requirements, analyzing processing 29
resolving data structure conflicts 77
resource managers 111
Resource Recovery

application programs 111
Introduction to 110
protected resources 110
recoverable resources 110
resource managers 111
sync-point manager 111

Resource Recovery Services/Multiple
Virtual Storage (RRS/MVS)

introduction to 110
ODBA interface 137

resources
protected 110
recoverable 110
security 9

response mode, description 101
restart your program

basic CHKP 45
codes for, descriptions 65
symbolic CHKP 45

restart, emergency 187
Restart, Extended 43, 65
retrieval of IMS database statistics 149
RETRY option 49
risks to security, combined files 2
ROLB system service call 34, 64
ROLL system service call 64
ROLS system service call 34, 67
ROLS system service calls 48
root anchor point 71
root segments definition 4
roster, current 12
routines

DFSERA50 170
ESTAE 48
STAE 48

RRS/MVS (Resource Recovery
Services/Multiple Virtual Storage) 115,
137

RTRUNC parameter 100

S
schedule a PSB, in a call-level program,

how to 59
schedule, classes examples 23
screen design considerations 97

SDSF (Spool Display and Search
Facility) 187

secondary indexing
descriptions 78
examples 79
Partitioned Secondary Index

(PSINDEX) 79
specifying 80

security
and the PROCOPT= operand 88
database 85, 87
databases and data

communications 10
field level sensitivities 87
identifying online requirements 93
key sensitivities 87
password security 94
resources 9
risks of combined files 2
segment sensitivity 86
signon 93
supplying information about your

application 95
terminals 94

segments
description 3
preventing access to by other

programs 61
sensitivity 86

sensitivities
data 4
key 87

sensitivity
field level 6, 87
general description 85
program 47
segments 86

sequential access methods
characteristics of 74
HISAM 75
HSAM 75
types 74

sequential dependents 32
sequential processing only 75
SETO system service call 183
SETS system service call 34, 67
SETS system service calls 48
SETU system service call 67
shared queues option 94
SHISAM (Simple Hierarchical Indexed

Sequential Access Method) 76
SHSAM (Simple Hierarchical Sequential

Access Method) 76
signon security 93, 95
simple HISAM (SHISAM) 76
simple HSAM (SHSAM) 76
single mode 36, 41, 44
skills reports, instructors 24
SPA (scratchpad area) 99
specification of

field level sensitivities 78
frequency, checkpoints 46

SPIE routine 49
SPM (sync-point manager) 109
Spool API application design 183
Spool Display and Search Facility

(SDSF) 187

SQL (Structured Query Language) 32
STAE routines 48
STAT call

debugging 149
formats for statistics

OSAM buffer pool, STAT call 150
OSAM buffer subpool, enhanced

STAT call 154
VSAM buffer subpool, enhanced

STAT call 159
VSAM buffer subpool, STAT

call 151
system service 178
use in debugging 171

statistics, database 149
status codes, QC 39
STATUS statement 144, 168
storage of data

combined files 2
databases 2
separate files 1

structure of data, methods 16
Structured Query Language (SQL) 32
structures

data 5
summary of symbolic CHKP and basic

CHKP 43
supplying security information 95
symbolic checkpoints

descriptions 43, 63
IDs, specifying 63
issuing 65
restart 45, 65

sync_level values 109
sync-point manager (SPM) 109, 111
synchronous conversation, description for

LU 6.2 transactions 107
synonyms, data elements 13
syntax diagram

how to read xiv
sysplex data-sharing 38
system log

on tape 34
storage 34

system service calls
APSB (allocate program specification

block) 139
CHNG 183
DPSB (deallocate program

specification block) 140
I/O PCB, requesting during

PSBGEN 62
INIT 48
INQY 48
ISRT 183
LOG 162, 178
PURG 184
ROLB 34, 64
ROLL 64
ROLS 34, 48, 67
SETO 183
SETS 34, 48, 67
SETU 67
STAT 149, 178

system service requests, functions
provided 56

202 Application Programming: Design Guide



T
taking checkpoints 62
terminal screen, designing 97
terminal security 94, 95
termination, abnormal 41
terminations of PSBs, restrictions 59
test of DL/I call sequences 143, 167
test, unit 143, 165
testing application programs

DFSDDLT0 167
DL/I test programs 143
IMS Batch Terminal Simulator for

z/OS 144
items needed 143, 165

TM batch program 34
token, definition of 100
trace control facility 167
TRANSACT macro 42
transaction codes 34, 35
transaction response mode 36
transaction-oriented BMPs.

See BMP (batch message processing)
program

TSO application programs 42
two-phase commit process

UOR 112
two-phase commit protocol 111
TXTU parameter 185
type 18 log record 64

U
unavailability of data 46, 65
unique identifier, data 14
unit of work 40
unit test 143, 165
UOR (unit of recovery) 112
update access, specifying with PROCOPT

operand 88
user requirements, analyzing 9
utilities

Batch Backout 34
DFSERA10 64, 177
File Select and Formatting Print

program 44

V
values, isolating duplicate 19
VBASF, formatted VSAM subpool

statistics 152
VBASS, formatted summary of VSAM

subpool statistics 153
VBASU, unformatted VSAM subpool

statistics 153
VBESF, formatted VSAM subpool

statistics 159
VBESS, formatted summary of VSAM

subpool statistics 161
VBESU, unformatted VSAM subpool

statistics 161
view of data, a program's 4
views, local 22
VisualGen 16
VSAM buffer subpool, retrieving

enhanced subpool statistics 159

VSAM buffer subpool, retrieving
(continued)

statistics 151, 159

W
wait-for-input (WFI)

transactions 36, 39
waits, program 45
WFI parameter 39
writing information to system logs 162

X
X’18’ log record 44
XRST (Extended Restart) 43

Z
z/OS files

accessing 32, 53
descriptions 54

z/OS Scheduler JCL Facility (SJF) 184

Index 203



204 Application Programming: Design Guide





����

Program Number: 5655-J38

Printed in USA

SC18-7810-04



Sp
in
e
in
fo
rm
at
io
n:

�
�

�
IM

S
Ap

pl
ic

at
io

n
Pr

og
ra

m
m

in
g:

D
es

ig
n

G
ui

de
Ve

rs
io

n
9


	Contents
	Figures
	Tables
	About This Book
	Summary of Contents
	Prerequisite Knowledge
	How to Use This Book
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	Accessibility Features for IMS Version 9
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of This Book for IMS Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes


	Chapter 1. Designing an Application: Introductory Concepts
	Storing and Processing Information in a Database
	Storing Data in Separate Files
	Storing Data in a Combined File
	Storing Data in a Database
	Database Hierarchies
	Your Program's View of the Data
	Database Description (DBD)
	Database Program Communication Block (DB PCB)

	Processing a Database Record

	A Look at the Tasks Ahead of You
	Designing the Application
	Developing Specifications
	Implementing the Design


	Chapter 2. Designing an Application: Data and Local Views
	An Overview of Application Design
	Identifying Application Data
	Listing Data Elements
	Naming Data Elements
	Documenting Application Data

	Designing a Local View
	Analyzing Data Relationships
	Grouping Data Elements into Hierarchies
	Determining Mappings

	Local View Examples
	Example 1: Schedule of Courses
	Example 2: Instructor Skills Report
	Example 3: Instructor Schedules



	Chapter 3. Analyzing IMS Application Processing Requirements
	Deciding Your IMS Application’s Requirements
	Accessing Databases With Your IMS Application Program
	Accessing Data: The Types of Programs You Can Write for Your IMS Application
	DB Batch Processing
	Data That a DB Batch Program Can Access
	Using DB Batch Processing
	Recovering a DB Batch Program

	TM Batch Processing
	Processing Messages: MPPs
	Data That an MPP Can Access
	Using an MPP

	Processing Messages: IFPs
	Data That an IFP Can Access
	Using an IFP
	Recovering an IFP

	Batch Message Processing: BMPs
	Batch Processing Online: Batch-Oriented BMPs
	Batch Message Processing: Transaction-Oriented BMPs

	Java Message Processing: JMPs
	Java Batch Processing: JBPs

	IMS Programming Integrity and Recovery Considerations
	How IMS Protects Data Integrity: Commit Points
	What Happens at a Commit Point
	Where Commit Points Occur

	Planning for Program Recovery: Checkpoint and Restart
	Introducing Checkpoint Calls
	When to Use Checkpoint Calls
	Specifying Checkpoint Frequency

	Data Availability Considerations
	Dealing with Unavailable Data
	Scheduling and Accessing Unavailable Databases

	Use of STAE or ESTAE and SPIE in IMS Programs

	Dynamic Allocation for IMS Databases

	Chapter 4. Analyzing CICS Application Processing Requirements
	Deciding Your CICS Application's Requirements
	Accessing Databases With Your CICS Application Program
	Writing a CICS Program to Access IMS Databases
	Writing a CICS Online Program
	Data That a CICS Online Program Can Access
	Using a CICS Online Program

	Writing an IMS Batch Program
	Data That a Batch Program Can Access
	Using a Batch Program
	Converting a Batch Program to a Batch-Oriented BMP

	Writing a Batch-Oriented BMP Program
	Data That a Batch-Oriented BMP Can Access
	Using a Batch-Oriented BMP
	Recovering a Batch-Oriented BMP


	Using Data Sharing for Your CICS Program
	Scheduling and Terminating a PSB (CICS Online Programs Only)
	Linking and Passing Control to Other Programs (CICS Online Programs Only)
	How CICS Distributed Transactions Access IMS
	Maximizing the Performance of Your CICS System
	Programming Integrity and Database Recovery Considerations for Your CICS Program
	How IMS Protects Data Integrity for Your Program (CICS Online Programs)
	Recovering Databases Accessed by Batch and BMP Programs
	Requesting an I/O PCB in Batch Programs
	Taking Checkpoints in Batch and BMP Programs
	Backing Out Database Changes
	Restarting Your Program


	Data Availability Considerations for Your CICS Program
	Unavailability of a Database
	Unavailability of Some Data in a Database
	The SETS or SETU and ROLS Functions

	Use of STAE or ESTAE and SPIE in IMS Batch Programs
	Dynamic Allocation for IMS Databases

	Chapter 5. Gathering Requirements for Database Options
	Analyzing Data Access
	Direct Access
	Primarily Direct Processing: HDAM
	Direct and Sequential Processing: HIDAM
	Main Storage Database: MSDB
	Data Entry Database: DEDB

	Sequential Access
	Sequential Processing Only: HSAM
	Primarily Sequential Processing: HISAM

	Accessing z/OS Files through IMS: GSAM
	Accessing IMS Data through z/OS: SHSAM and SHISAM

	Understanding How Data Structure Conflicts Are Resolved
	Using Different Fields: Field-Level Sensitivity
	Example of Field-Level Sensitivity
	Specifying Field-Level Sensitivity

	Resolving Processing Conflicts in a Hierarchy: Secondary Indexing
	Retrieving Segments Based on a Different Key
	Retrieving Segments Based on a Dependent's Qualification

	Creating a New Hierarchy: Logical Relationships
	Accessing a Segment through Different Paths
	Inverting a Parent-Child Relationship


	Providing Data Security
	Providing Data Availability
	Keeping a Program from Accessing the Data: Data Sensitivity
	Segment Sensitivity
	Field-Level Sensitivity
	Key Sensitivity

	Preventing a Program from Updating Data: Processing Options
	E option
	GO option
	N option
	T option
	GOx and data integrity


	Read Without Integrity
	What Read Without Integrity Means
	Data Set Extensions


	Chapter 6. Gathering Requirements for Message Processing Options
	Identifying Online Security Requirements
	Limiting Access to Specific Individuals: Signon Security
	Limiting Access for Specific Terminals: Terminal Security
	Limiting Access to the Program: Password Security
	Allowing Access to Security Data: Authorization Security
	How IMS Security Relates to DB2 UDB for z/OS Security
	Supplying Security Information

	Analyzing Screen and Message Formats
	An Overview of MFS
	An Overview of Basic Edit
	Editing Considerations in Your Application

	Gathering Requirements for Conversational Processing
	What Happens in a Conversation
	Designing a Conversation
	Important Points about the SPA
	Recovery Considerations in Conversations

	Identifying Output Message Destinations
	The Originating Terminal
	To Other Programs and Terminals
	Alternate Response PCB
	Express PCB



	Chapter 7. Designing an Application for APPC
	Overview of APPC and LU 6.2
	Application Program Types
	Standard DL/I Application Program
	Modified Standard DL/I Application Program
	CPI Communications Driven Program

	Application Objectives
	Choosing Conversation Attributes
	Synchronous Conversation
	Asynchronous Conversation
	Asynchronous Output Delivery
	MSC Synchronous and Asynchronous Conversation

	Conversation Type
	Conversation State
	Synchronization Level
	Distributed Sync Point
	Distributed Sync Point Concepts
	Introduction to Resource Recovery
	Summary of RRS/MVS Support

	Impact on the Network

	Application Programming Interface for LU Type 6.2
	Implicit API
	Explicit API

	LU 6.2 Partner Program Design
	LU 6.2 Flow Diagrams
	Integrity Tables
	DFSAPPC Message Switch


	Chapter 8. Writing ODBA Application Programs
	General Application Program Flow
	Establishing the Application Execution Environment
	Allocating a PSB
	Performing DB Calls
	Commit Changes
	Deallocating the PSB
	Terminating the Connection

	Server Program Structure
	DB2 UDB for z/OS Stored Procedures Use of ODBA

	Chapter 9. Testing an IMS Application Program
	What You Need to Test an IMS Program
	Testing DL/I Call Sequences (DFSDDLT0) Before Testing Your IMS Program
	Using IMS Batch Terminal Simulator for z/OS to Test Your IMS Program
	Tracing DL/I Calls with Image Capture for Your IMS Program
	Using Image Capture with DFSDDLT0
	Restrictions on Using Image Capture Output
	Running Image Capture Online
	Running Image Capture as a Batch Job
	Format of DLITRACE Control Statement
	Example of DLITRACE
	Special JCL Requirements for Running Image Capture in Batch
	Notes on Using Image Capture

	Retrieving Image Capture Data from the Log Data Set

	Requests for Monitoring and Debugging Your IMS Program
	Retrieving Database Statistics: The STAT Call
	Format of OSAM Buffer Pool Statistics
	Format of VSAM Buffer Subpool Statistics
	Format of Enhanced/Extended OSAM Buffer Subpool Statistics
	Format of Enhanced VSAM Buffer Subpool Statistics

	Writing Information to the System Log: The LOG Request

	What to Do When Your IMS Program Terminates Abnormally
	Recommended Actions after an Abnormal Termination of an IMS Program
	Diagnosing an Abnormal Termination of an IMS Program
	IMS Program Initialization Errors
	IMS Program Execution Errors



	Chapter 10. Testing a CICS Application Program
	What You Need to Test a CICS Program
	Testing Your CICS Program
	Using the Execution Diagnostic Facility (Command-Level Only)
	Using CICS Dump Control
	Using CICS Trace Control
	Using the DL/I Test Program (DFSDDLT0)
	Tracing DL/I Calls with Image Capture
	Using Image Capture with DFSDDLT0
	Running Image Capture Online
	Running Image Capture in Batch
	Example of DLITRACE
	Special JCL Requirements
	Notes on Using Image Capture
	Retrieving Image Capture Data from the Log Data Set


	Requests for Monitoring and Debugging Your CICS Program
	What to Do When Your CICS Program Terminates Abnormally
	Recommended Actions after an Abnormal Termination of CICS
	Diagnosing an Abnormal Termination of CICS
	CICS Initialization Errors
	CICS Execution Errors



	Chapter 11. Testing an ODBA Application Program
	Using the DL/I Test Program (DFSDDLT0) Before Testing Your ODBA Program
	Tracing DL/I Calls with Image Capture to Test Your ODBA Program
	Using Image Capture with DFSDDLT0 to Test Your ODBA Program
	Running Image Capture Online
	Retrieving Image Capture Data from the Log Data Set
	Requests for Monitoring and Debugging Your ODBA Program
	What to Do When Your ODBA Program Terminates Abnormally
	Recommended Actions after an Abnormal Termination of an ODBA Program
	Diagnosing an Abnormal Termination of an ODBA Program
	ODBA Initialization Errors
	ODBA Running Errors



	Chapter 12. Documenting an Application Program
	Documentation for Other Programmers
	Documentation for Users

	Chapter 13. Managing the IMS Spool API Overall Design
	The IMS Spool API Design
	Sending data to the JES Spool Data Sets
	Spool API Performance Considerations
	JES Initiator Considerations
	Application Managed Text Units
	BSAM I/O Area

	Spool API Application Coding Considerations
	Print Data Formats
	Message Integrity Options
	Print Disposition
	Message Options
	Destination Name (LTERM) usage



	Appendix. IVP Sample Application
	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


